4

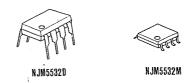
HIGH PERFORMANCE LOW-NOISE DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM5532 is a high performance dual low noise operational amplifier. Compared to the standard dual operational amplifiers, such as the NJM1458, it shows better noise performance, improved output drive capability, and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high quality and professional audio equipment, instrumentation, control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equil to one If very low noise is of prime importance, version be used which has guaranteed NJM5532DD it is recommended that the noise specifications.

DIP8, DMP8, SIP8


■ FEATURES

• Operating Voltage $(\pm 3V \sim \pm 20V)$ • Small Signal Bandwidth (10MHz typ.)• Output Drive Capability $(600\Omega, 10V\text{rms typ.})$ • Input Noise Voltage $(5nV/\sqrt{\text{Hz}} \text{ typ.})$

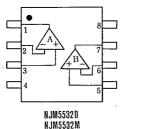
Power Bandwidth (140kHz typ.)
 Slew Rate (8V/ µs typ.)

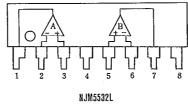
Package OutlineBipolar Technology

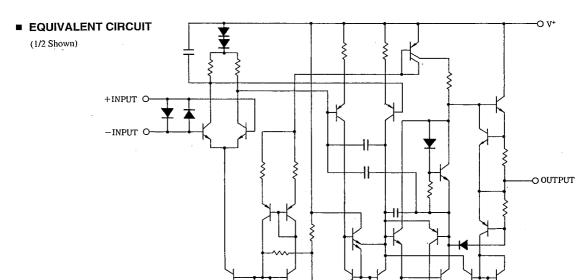
■ PACKAGE OUTLINE

PIN FUNCTION

1. A OUTPUT 2. A-INPUT


3. A+INPUT 4. V


5. B+INPUT 6. B-INPUT


7. B OUTPUT 8. V

O V

■ PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±22	V
Input Voltage	V _{IC}	V+/V-	(V)
Differential Input Voltage	Vib	±0.5	V
Power Dissipation		(DIP8) 500	mW
	PD	(DMP8) 600(note)	mW
		(SIP8) 800	mW
Operating Temperature Range	Торг	-20~+75	c
Storage Temperature Range	Tstg	-40~+125	r

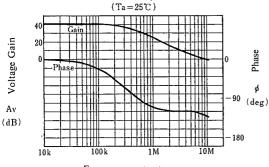
(note) At on a ceramic PCB ($10 \times 20 \times 0.635$ mm)

■ ELECTRICAL CHARACTERISTICS DC ELECTRICAL CHARACTERISTICS

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

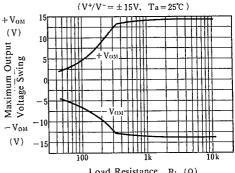
PARAMETER	ava abou	TEST CONDITION		5532		
	SYMBOL		MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	. V _{IO}		_	0.5	4	mV
Input Offset Current	I _{IO}		_	10	150	nΑ
Input Bias Current	l _B .		_	200	800	nA
Operating Current	l _{cc}		-	9	16	mA
Input Common Mode Voltage Range	V _{ICM}		±12	±13	_	V
Common Mode Rejection Ratio	CMR		70	100	_	dB
Supply Voltage Rejection Ratio	SVR		. 80	100	<u> </u>	dB.
Large Signal Voltage Gain 1	A _V 1	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	88	100.	_	dB∙
Large Signal Voltage Gain 2	A _V 2	$R_L \ge 600\Omega$, $V_O = \pm 10V$	83.5	94	_	dB.
Maximum Output Voltage Swing 1	V _{OM1}	R _L ≥600Ω	±12	±13	_	v
Maximum Output Voltage Swing 2	V _{OM2} :	$R_{L} \ge 600\Omega$, $V^{+}/V^{-} = \pm 18V$	±15	±16	_	v
Input Resistance	R _{IN}		30	300	_	kΩ
Short Circuit Current	Ios		-	38	_	mA

■ ELECTRICAL CHARACTERISTICS AC ELECTRICAL CHARACTERISTICS

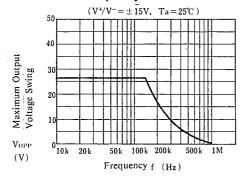

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Resistance	Ro	$A_V = 30 dB$, $f = 10 kHz$, $R_L = 600 \Omega$	_	0.3	_	Ω
Overshoot		$A_V = 1, V_{1N} = 100 \text{mV}_{P-P}, C_L = 100 \text{pF}, R_L = 600 \Omega$		10	_	%
Gain	Av	f=10kHz	l —	67	<u> </u>	dB
Slew Rate	SR	•	_	8	_	V/μS
Gain Bandwidth Product	GB	$C_L 100 pF$, $R_L = 600 \Omega$		10	_	MHz
Power Bandwidth	WPG	$V_0 = \pm 10V$	_	140		kHz
Power Bandwidth	WPG	$V_{O} = \pm 14V, R_{L} = 600\Omega, V^{+}/V^{-} = \pm 18V$	l —	100	l —	kHz
Equivalent Input Noise Voltage 1	e _n 1	$f_O = 30$ Hz	l —	8	_	nV/√H:
Equivalent Input Noise Voltage 2	e _n 2	$f_0 = 1 \text{kHz}$	~	5	l —	nV/√H2
Equivalent Input Noise Current 1	i _n 1	$f_0 = 30Hz$	l —	2.7		pA/√H
Equivalent Input Noise Current 2	i _n 2	$f_0 = 1 \text{kHz}$	_	0.7		pA/√H
Channel Separation	CS	$f=1kHz$, $R_S=5k\Omega$	-	110		dB
	1		1	1	1	l

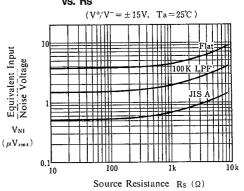
JRC's general selected products D rank are also prepared for the noise standard (Rs=2.2k Ω , RIAA, Vn=1.4 μ V Max.)


■ Typical Characteristics

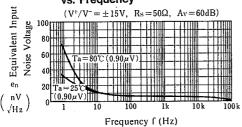
Voltage Gain, Phase vs. Frequency


Frequency f (Hz)

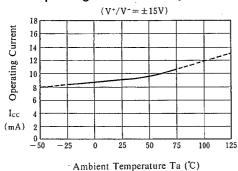
Maximum Output Voltage Swing vs.Load Resistance



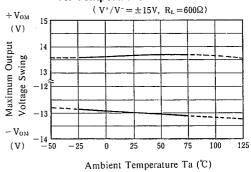
Load Resistance $R_{l_1}(\Omega)$


Maximum Output Voltage Swing vs. Frequency

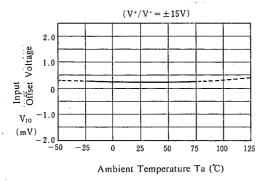
Equivalent Input Noise Voltage vs. Rs

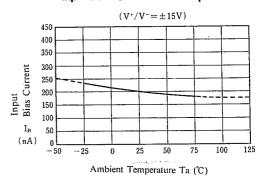


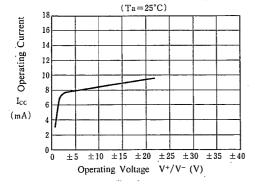
Equivalent Input Noise Voltage vs. Frequency

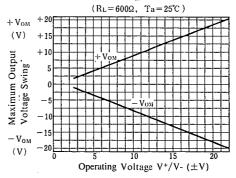


■ TYPICAL CHARACTERISTICS

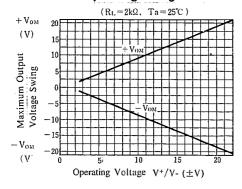

Operating Current vs. Temperature


Maximum Output Voltage Swing vs. Temperature

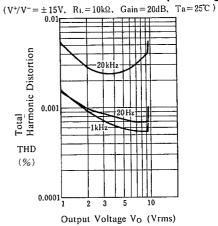

Input Offset Voltage vs. Temperature


Input Bias Current vs. Temperature

Operating Current vs. Operating Voltage



Maximum Output Voltage Swing vs. Operating Voltage



■ TYPICAL CHARACTERISTICS

Maximum Output Voltage Swing vs. Operating Voltage

Total Harmomic Distortion vs. Output Voltage

■ NOTICE

When used in voltage follower circuit, put a current limit resistor into non-inverting input terminal in order to avoid inside input diode destruction when the power supply is turned on. (ref. Fig. 1)

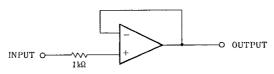


Fig. 1

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.