

PRELIMINARY

1/4 DUTY LCD DRIVER WITH KEY SCAN

■ GENERAL DESCRIPTION

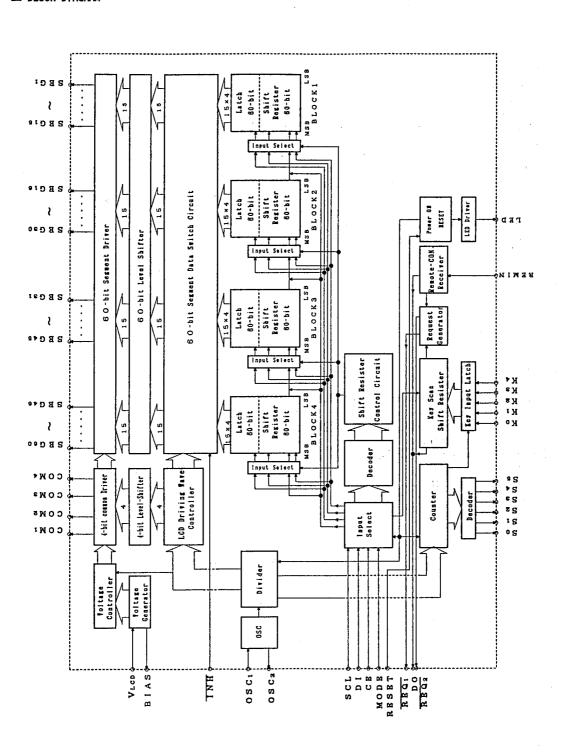
The NJU6436 is a 1/4 duty LCD driver for segment type LCD panel with key scanning, Ir receiving and LED driving function.

The LCD driver consists of 4-common and 60-segment drives up to 240 segments and LED driver drives 1 LED which can use like as power on indicator.

The key scan function scanning up to 30 keys of the 6 x 5 matrix and the Ir receiving function recover the input wave shape. The key scanning data and Ir receiving data are transferred to the MPU serially.

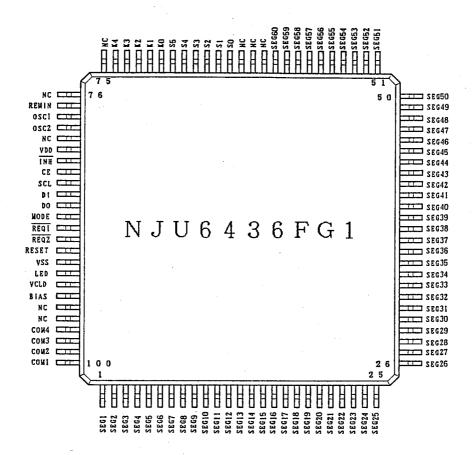
The NJU6436 incorporate all of the function required front panel, therefore it is easy to apply car mounted audio, general audio and other products which have a display and key input on the front panel.

■ PACKAGE OUTLINE


NJU6436F

FEATURES

- 60-Segment Drivers
- Duty Ratio 1/4 Duty (Up to 240 Segments)
- 30 Key Scan Function (6 x 5 Matrix)
- Serial Data Transmission (Shift Clock 2MHz max.)
- Power-On Initialization
- Display Off Function (INH Terminal)
- LED Drive Function
- Ir Receiving Function
- Operating Voltage --- 5V±10%
- Package Outline --- QFP 100
- C-MOS Technology



BLOCK DIAGRAM

■ PIN CONFIGURATION

TERMINAL DESCRIPTION

NO.	SYMBOL	F U N C T I O N
1~60	SEG ₁ ~ SEG ₆₀	LCD Segment Output Terminal
64~69	S₀ ~ S₅	Key Scanning Signal Output Terminal
70~74	K₀ ~ K₄	Key Scanning Input Terminal (Built-in Pull-down Resistance)
77	REMIN	Ir receiver input Terminal Input the Ir receiver output. This terminal must be "L" level when no use.
78, 79	OSC ₁ , OSC ₂	CR Oscillating Terminal (External R Connecting) For external clock operation, the clock should be input on OSC1.
81	V _{DD}	Power Supply (+5V)
91	Vss	Power Supply (OV)
82	TNH	Display-Off Control Terminal Display is turned off: Display data is retained in the shift-register.
		"H": Display-On "L": Display-Off
83	CE	Chip Enable Terminal "H": LCD display data Input , Mode setting code Input "L": Key data output mode Fall Edge: LCD display data Latch , Mode setting code Latch
84	SCL	Serial Data Transmission Clock Terminal Shift clock used for transferring display data and mode set- ting code to internal shift register, and used as Key data output shift clock.
85	DI	Serial Data Input Terminal Data input timing: Rise edge of SCL clock
86	DO DO	Serial Data Output Terminal Key data and Ir input-data output. Data output timing : Rise edge of SCL clock
87	MODE	Select the Display Data or Mode Setting code Terminal "H": Mode setting code input "L": LCD Display data input
88	REQ ₁	Request Signal Output Terminal (Key Data Read Request)
89	REQ ₂	Request Signal Output Terminal (Ir Receiver Data Read Request)
90	RESET	Reset Terminal (Built-in Pull-down Resistance) "H": Reset operation (Shift-register all clear, key scan circuit initialize) "L" or OPEN: Normal operation
92	LED	LED Direct driving Terminal Turns on during the NJU6436 is turned on except reset period. LED On: "L" output LED Off: Hi-impedance
93	VLCD	Power Supply for LCD Driving
94	BIAS	Adjusting Terminal for output current of Voltage Follower
97~100	COM ₄ ~ COM ₁	LCD Common Output Terminal
61~63, 75,76,80	,95,96 NC	Non Connection (Normally open)

FUNCTIONAL DESCRIPTION

(1) Operation of each block

(1-1) Oscillation Circuit

Oscillation by connecting external resistance.

This circuits supply the basical clock signal to other circuits like as common and segment driver and key scan circuits.

(1-2) Divider Circuit

This circuit divide the oscillator frequency and generate the common and segment output timing signals.

(1-3) Input Control Circuit

This circuit select the LCD display data and mode setting code according to the condition of MODE terminal.

(1-4) Shift-Register Circuit(60-bit) and Latch Circuit(60-bit)

When the CE terminal is "H" (Enable mode), the display data is transferred to the shift-register synchronized by the shift clock on the SCL terminal.

The CE terminal signal latches the display data at the falling edge.

(1-5) Segment Data switch Circuit and Segment Driver

Set the segment display data according to the common timing and output through level shifter and output buffer.

(1-6) Level Shifter Circuit

Logic driving voltage is converted to LCD driving voltage.

(1-7) LCD Common Driver

Output the common driving signal for LCD.

(1-8) LCD Bias Level Generator

This circuit generate the LCD bias voltage.

(1-9) Key Scan Counter

This circuits generate key scanning timing. When the key input, the data in the counter is transferd to the key scan shift register.

(1-10) Key Scan Decoder

Decoding the counter output and generate the key scanning signal.

(1-11) Key Input Latch

Latch the key input data.

This circuit detect two times same key input for a chatter free operation.

(1-12) Key Scan Shift Register

Output the data sent from counter and key input latch data to the MPU serially through the DO terminal.

(1-13) Request Signal Generator Circuit

When detect some key input by the key scanning, this circuits output the "L" level signal to the controller as a "read out request signal" (REQ.).

The "L" level output of $\overline{REQ_1}$ is released when the key scan control code send the "End of read out".

When the data input from the REMIN, the "read out request signal" $\overline{\text{REQ}_2}$ is output "L" level as a "read out request signal" by synchronizing the rise edge of the input data.

It is also released when the mode setting code send the "End of read out".

(1-14) LED Driving Circuit

The LED connected between LED terminal and $V_{\rm DD}$ terminal is turned on during the power turns on of the NJU6436 except reset period.

(2) Data Input Format

- Two kind of data is input to the NJU6436.
 - ① Mode Setting Data
 - 2 LCD Display Data

Normally, the shift register control code of mode setting and the display data are pare always. First, setting the transferred register by the shift register control code. Second, input the display data. Start the key scan, Stop the key scan and key data output are controlled by the key scan control code.

All of display data and mode setting data are input synchronized by the rise edge of the clock signal.

- Two kind of data is output from the NJU6436.
 - 3 Key Data
 - ① Output signal of Ir Receiver

Key data outputs the key matrix scan data.

Key scan is stopped when power is supplied, reset signal is input to the reset terminal and software reset operation is executed. The key scan starts when the key input status change or "key scan start mode" of the key scan control code is input.

Key scan operation is stoped by either of the "key scan stop mode" of key scan control code, and reset signal inputs to the reset terminal.

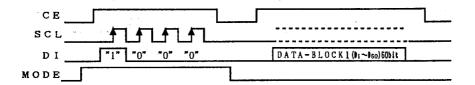
After the key scan operation, the NJU6436 output the data read out request signal $(\overline{REQ_1})$ to the controller.

Then the "key data output mode" of key scan control code is input to the NJU6436, the input key data is transferred to the transfer register and output to the data output terminal "DO" by synchronizing with rise edge of shift clock. (key data is 8 bit format.)

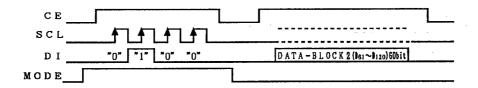
Key data read out signal $(\overline{REQ_1})$ is released by the "End of read out" of key scan control code input to the NJU6436.

Ir receiver output data input from the Ir receiver input terminal "REMIN" output to the data output terminal "DO" through internal buffer.

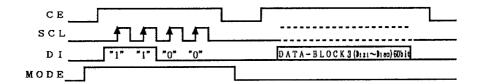
The NJU6436 output the read out request signal $(\overline{REQ_2}="L")$ by synchronize with the rise edge of the data. The read out request signal of $(\overline{REQ_2})$ is released by the "End of read out" mode input same as key data read out.

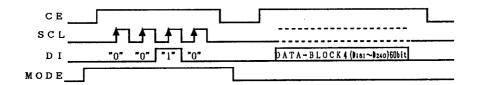

(2-1) Input Data Correspond to Segment Status

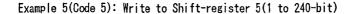
Data Dxxx	Segment Status
"H"	ON
"L"	OFF

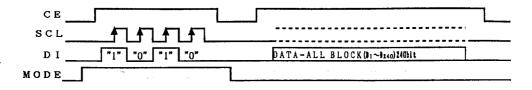


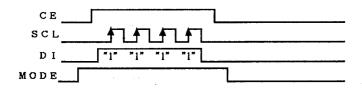
(2-2) Write to Shift-register Example


Example 1(Code 1): Write to Shift-register 1(1 to 60-bit)

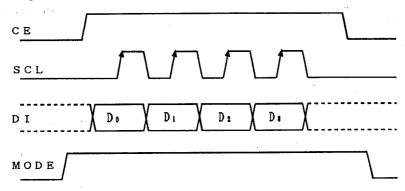

Example 2(Code 2): Write to Shift-register 2(61 to 120-bit)




Example 3(Code 3): Write to Shift-register 3(121 to 180-bit)


Example 4(Code 4): Write to Shift-register 4(181 to 240-bit)

Example 6(Code F): Soft-Reset


5

(2-3)Mode Set Up

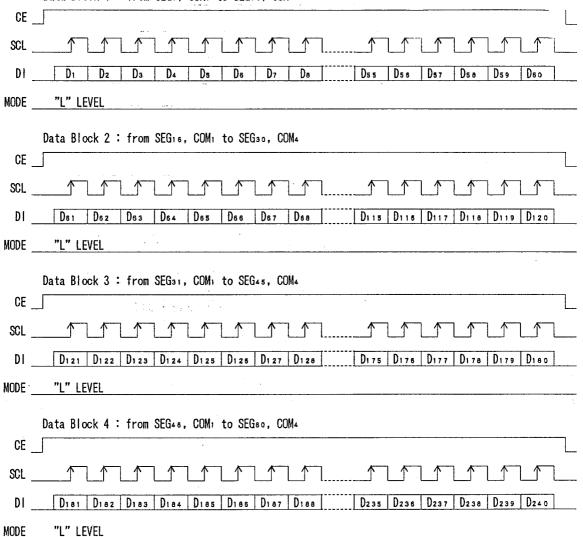
Data transferred shift register selection, key scan control and software reset are performed by writing the 4 bit data to the NJU6436 in CE="H" and MODE="H" state.

< Input Timing Chart >

< Mode Setting Table >

CE	MODE	Mode sett	ing code	Mode Set Up
Term.	Term.		D3~Do	wode Set up
-		·	0000 (0)	End of Read out (Key data and Ir receiver output data) Release the read out request and start the key scan.
		CF: LT	0001 (1)	Select the shift-register BLOCK1
		Shift-	0010 (2)	Select the shift-register BLOCK2
		register	0011 (3)	Select the shift-register BLOCK3
		control	0100 (4)	Select the shift-register BLOCK4
		code	0101 (5)	Select the all shift-register (BLOCK1~4)
			0110 (6)	NO OPERATION
			0111 (7)	NO OPERATION
"H"	"H"		1000 (8)	Key data output Key data set into the transfer register and prepare the key data transmit.
		Кеу	1001 (9)	Key scan start Key scan start from the halt state.
		control	1010 (A)	Key scan stop and key data output Newly key input data set into the transfer register and stop the key scan. Note;Read out request signal is not released
			1011 (B)	Key scan initialize Stop the key scan and release the read out request signal.
			1100 (C)	NO OPERATION
			1101 (D)	NO OPERATION
			1110 (E)	NO OPERATION
			1111 (F)	Software reset Shift-register all clear (data="0") Key scan initialize

Note) The decoder is 4 bit format data through type. Though 8 bit data is also available to input at the mode setting, in that time front 4 bit is valid from the fall edge of CE signal.

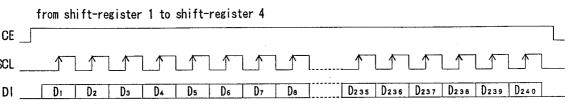


(2-4)Block Data and Whole Data transfer

a. Block Data(60-bit) transfer

Each 60 bits data transfer to each shift register block 1 to 4 respectively. When the input data is over than 60 bit, front 60 bit from fall edge of "CE" signal is valid. In case of the input data is less than 60 bit, the previous data is remaining on the register. So that 60 or over than 60 bit data input must be required.

Data Block 1: from SEG1, COM1 to SEG15, COM4



MODE "L" LEVEL

b. Whole Data(240-bit) transfer

Whole 240 bits data transfer to the shift register block 1 to 4 once a time. When the input data is over than 240 bit, front 240 bit from fall edge of "CE" signal is valid. In case of the input data is less than 240 bit, the previous data is remaining on the register. So that 240 or over than 240 bit data input must be required.

(2-5) Display Data Correspond to Segment and Common Terminals

Mode	Data	Segment	COM ₁	COM ₂	COM₃	COM4	Data Block
Mode 1	D: Dz D3 D4	SEG ₁	0	0	0	0	Data Block 1
	:		:		:		
	D57 D58 D59 D60	SEG1 5	0	0	0	0	
Mode 2	D61 D62 D63 D64	SEG16	0	0	0	0	Data Block 2
				•	:		
	D117 D118 D119 D120	SEG₃∘	0	0	0	0	
Mode 3	D121 D122 D123 D124	SEG31	0	0	0	0	Data Block 3
	:			:	:	0	
	D:77 D:78 D:79 D:80	SEG4 5	0	0	0	0	
Mode 4	D181 D182 D183 D184	SEG4 8	0	0	0	0	Data Block 4
	:	i		:	:	:	
	D237 D238 D239 D240	SEG# 0	0	0	0	0	

(3) Key Input Data Output Format

(3-1) Data Format

MSB							LSB					
A2	A1	A0	B4	В3	B2	B1	B0	*	B4∼B0	=	= K4~K0	Terminals
Dat	a of		K	ey S	can	Data	 I					
C	ount	er	b	y K4	to	Κo						

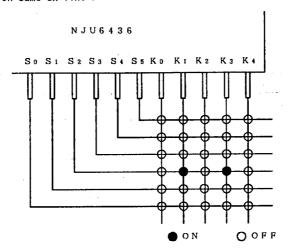
Key Scan Signal Correspond to Counter Data is as follows:

T		Key Scan Signal						C	ounter Da	ta					
Terminal		*		кеу	SC	an	311	gna					A2	A1	AO
So													0	0	0
Sı													0	0	1
S ₂													0	1	0
S ₃													0	1	1
S4								_					1	0	0
S ₅													1	0	1
													Divide	Cycle	Frequency
Search Pulse Width	-		← 1	024	/fo	sc:	≒ 7	.88	mSe	С			1 1024	7.88mS	
Key Scan One cycle	4		144/ ∉47.										<u>1</u> 6144	47.26 mS	21.15 Hz
Key Read MIN. Time	←		1	228	8/f	oso	c ≒ !	94.	52m	Sec		>	1 12288	94.52 mS	10.58 Hz

(fosc=130kHz)

Less than 47.26mSec key input is neglected due to the two times key input for the chatter free operation.

The 5 bit data of B4 to B0 correspond to the key input terminal K4 to K0, when some key is pressed the data "1" correspond to the key input line, input to the register.


The data of A2 to A0 and B4 to B0 indicate the key data input.

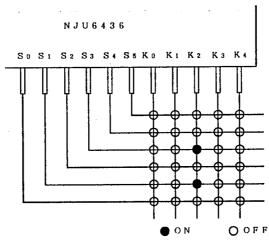
(3-2) Key Roll Over Input.

·When the roll over input occur, following data are input.

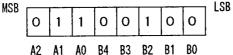
< Roll over on same Sx line >

When two key connected K_1 and K_3 pressed at once, the data "1" input to the B3 and B1. MSB LSB

W2R	0	1	0	0	1	0	1	0
	A2	A1	A0	B4	В3	B2	B1	ВО

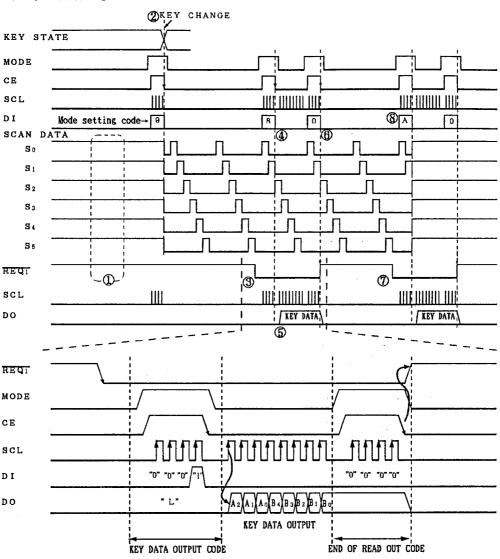

· Permit the following roll over.

< Roll over on same Kx line >


In this case, there are following priority.

 $S_5 > S_4 > S_3 > S_2 > S_1 > S_0$

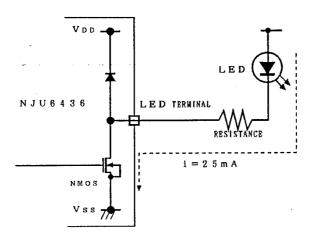
If this kind of roll over occur, the low priority input is ignore.



In case of above input, the key input of Si is ignored.

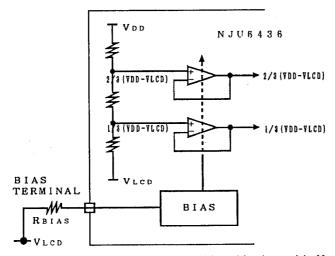
(3-3) Key Scan Timing Chart

[Operation Explanation]


- ① Before key scanning, all of Sx terminal output the "H" to detect the some key input.
- ② Key scan operation start when recognize the key input or setting the key scan. Note) The key input is detected by Kx input level, so the change of key input of same Kx line
- roll over can not recognize.

 ③ When key input, the NJU6436 output the read out request signal to the controller (REQ1="L"). In this time, the "DO" output change to the key data output terminal.
- When key data output is setting by the mode selection, the input key data transferred to the transfer register.
- (5) Key data of 8 bit output by synchronize with the rise edge of clock signal after the mode
- 6~7 Select the end of read out by the mode setting, the key scan register reset then start the key scan again.
- Wey scan stop and key data output" or "key scan initialize" key scan stop is selected by the key scan control code input. In this time, the key scan is stopped and all of So to So put on "H".

(4) LED Driving Circuit


Connecting the LED between LED terminal and Voo terminal, the LED turns on during the power of NJU6436 turns on except reset period.

Operating voltage current can adjust by insert the protection resistor between LED and LED terminal.

Note) Protection resistor must be connect to the LED to avoid over than the maximum ratings of voltage and current between Anode and Cathode of the LED. No protection resistor may occur the damage of LED output buffer and LED.

(5) LCD Driving Voltage / Bias current Adjustment Terminal

Power block is consist of 3 blocks of bias, bleeder and buffer amplifire as show above.

The output current of buffer amplifire can adjust by changing the current flow on bias circuit which controlled by external resistance connected to the BIAS terminal.

MASSOLUTE MAXIMUM RATINGS

(V_{ss}=0V,Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Operating Voltage (1)	V _{DD}	- 0.3 ~ + 7.0	V
Operating Voltage (2)	VLCD	V_{DD} -13.5 ~ V_{DD} +0.3	٧
Input Voltage	V _{IN} (1)	- 0.3 ~ V _{DD} +0.3	٧
Operating Temperature	Topr	- 30 ~ + 85	င
Storage Temperature	Tstg	- 40 ~ + 125	င

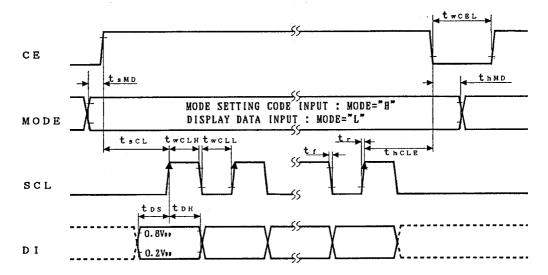
Note 1) All Input Terminals

ELECTRICAL CHARACTERISTICS

- DC Characteristics

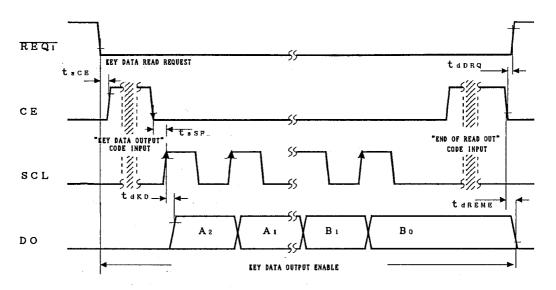
 $(Ta=25^{\circ}C, V_{DD}=5.0V, V_{SS}=0V, V_{DD}\sim V_{LCD}=13.5V)$

· DC Characteristics						ADD. AFCD.	
PARAMETER	SYMBOL	CONDI	IONS	MIN	TYP	MAX	UNIT
Operating Voltage	V DD	V _{DD} Terminal		4.5	5.0	5.5	<u> </u>
LCD driving Voltage	VLCD	V _{LCD} Terminal		V _{DD} -13.5		Vss	V
"H" Input Voltage	V _{1H}	RESET,SCL,DI,OTNH,Ko~K4,MO		0.8V _{DD}		VDD	٧
"L" Input Voltage	V _I r	RESET, SCL, D1, CTNH, Ko~K4, MOI	DE Terminals	Vss	.75	0.2V _{DD}	V .
"H" Input Current	Ін	SCL.DI.CE.REM	IN,MODE,TNH Terminals			5	μA
"L" Input Current	112	RESET, SCL, DI, O INH, Ko~K4, MO VI=Vss				5	μA
"H" Output Voltage (1)	V _{OH (1)}	loH=-10μA SEG1~SEG60 To	erminals	VDD-1.0	:		٧
"H" Output Voltage (2)	V _{OH (2)}	loн=-100 µA COM₁~COM₄ Te	rminals	VDD-0.6			٧
"H" Output Voltage (3)	V он (з)	l _{oн} =-40μA S _o ~S ₅ , DO, R	EQ, REQ ₂ Terminals	VDD-0.8		·	. V
"L" Output Voltage (1)	Vol (1)	IoL=10 MA SEG: ~SEG60 To	erminals			V _{LCD} +1.0	٧
"L" Output Voltage (2)	Vor (5)	lor=100 µA COM₁~COM₄ Te	rminals			V _{LCD} +0.6	٧
"L" Output Voltage (3)	V or (3)	loL=400μA So~Ss, DO, R				0.8	٧
"L" Output Voltage (4)	V _{OL (4)}	lor=25mA LED Terminal				1.5	٧
COM 1/3 Level Voltage	V мс1/3	lo=±5µA COM₁~COM₄ Te	rminals	1. (V _{DB} - -0.6)73	1:(VDD /3	Ψ ₁ cp)/3	٧
COM 2/3 Level Voltage	V _{MC2/3}	lo=±5µA COM₁∼COM₄ Te	rminals	2. (V _P = 7.6 ° 8 ° 73 ° 73 ° 73 ° 73 ° 73 ° 73 ° 73	2;(V _{DD} -73, CD)	2. (V _{p.p.} - 7, cg) 73 +0.6	٧
SEG 1/3 Level Voltage	V _{MS 1/3}	I _o =±5μA SEG ₁ ~SEG ₆₀ T	erminals	1. (Vpp- Vice)73	1;(VDD /3		V
SEG 2/3 Level Voltage	V _{MS2/3}	I _o =±5μA SEG ₁ ~SEG ₆₀ T	erminals	2: (Vp 3 -1:0 73	2:(VDD -VLCD) /3	2. (V _D 5- V ₁ c _B) 73 +1.0	V
Oscillation Frequency	fosc	0SC ₁ ,0SC ₂	R=1MΩ	15	20	25	kHz
		Terminals	R=140KΩ	110	130	150	kHZ
			R=51KΩ	200	300	400	kHz
Operating Current (1)	lss	Vss Terminal Except LCD output fosc=130kHz, CL=50PF RESET,LED,Ko~K4 Terminals Open			50	100	μA
		Key-Scan No-0			-	100	
Operating Current (2)	lrcp	V _{LCD} Terminal LCD output no fosc=130kHz RESET,LED,BIA		50	100	μA	
Pull-Down Resistance Current	l _p	K _o ~K ₄ , RESET V _{1N} =V _{DD}	rminals Open Terminals		10	20	μA

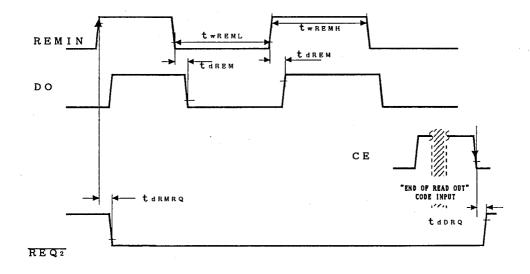


· AC Characteristics

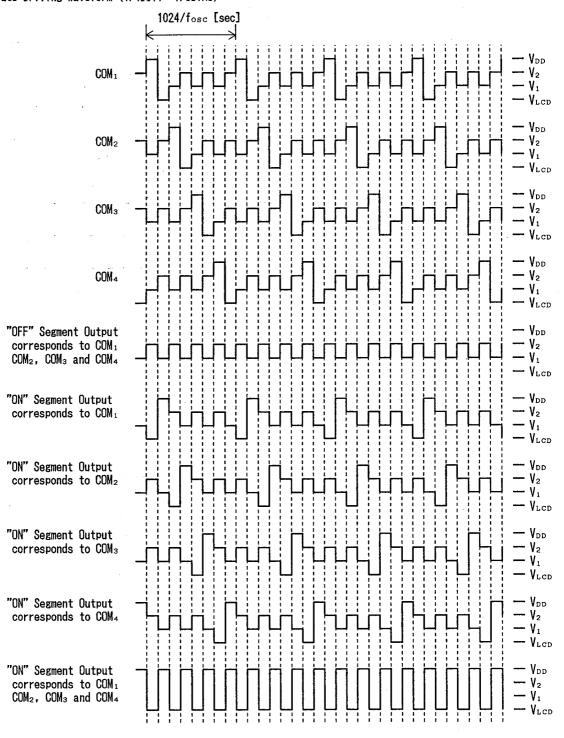
 $(Ta=25^{\circ}C, V_{DD}=5.0V, V_{SS}=0V, V_{DD}\sim V_{LCD}=13.5V)$


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
"L" Clock Pulse Width	twell	SCL Terminal	200			ns
"H" Clock Pulse Width	twclh	SCL Terminal	200			กร
Data Set-up Time	tos	SCL,DI Terminals	200			ns
Data Hold Time	tou	SCL,DI Terminals	200			ns
CE→SCL Set-up Time	tacı	SCL,CE Terminals	200			ns
SCL→CE Hold Time	thele	SCL,CE Terminals	200		:	ns
MODE→CE Set-up Time	t _{sMD}	CE, MODE Terminals	200			ns
CE→MODE Hold Time	thMD	CE, MODE Terminals	200			ns
CE "L" Pulse Width	twcel	CE Terminal	200			ns
REQ₁→CE Set-up Time	t _{s CE}	REQ ₁ ,CE Terminals	200			ns
CE→SCL Set-up Time	tasr	CE,SCL Terminals	200			ns
Data Output Delay Time	tako	SCL,DO Terminals DO Load = 50PF			120	ns
CE→REQ ₁ ,REQ ₂ Delay Time	t _{dDRQ}	CE,REQ ₁ ,REQ ₂ Terminals REQ ₁ ,REQ ₂ Load = 50PF			120	ns
REMIN "L" Pulse Width	twR EML	REMIN Terminal	200			ns
REMIN "H" Pulse Width	twR EMH	REMIN Terminal	200			ns
Data Output Delay Time (2)	tarem	REMIN,DO Terminals DO Load = 50PF		,	120	ns
REMIN→REQ ₂ Delay Time	tarmrq	REMIN, REQ2 Terminals DO Load = 50PF			120	ns

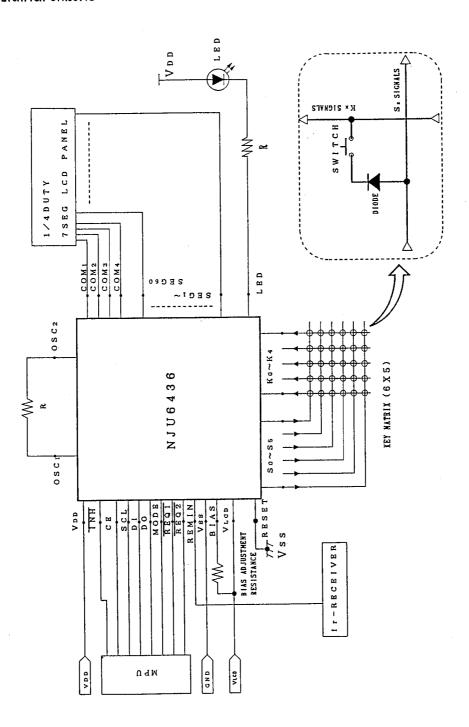
· Display Data Input / Mode Setting code input Timing Characteristics



· Key Data Output Timing Characteristics



· REMIN Input Data and DO Output Data Timing Characteristics


■ LCD Driving Waveform (1/4DUTY • 1/3BIAS)

 $W_1 = 1/3 \cdot |V_{DD} - V_{LCD}|, V_2 = 2/3 \cdot |V_{DD} - V_{LCD}|$

APPLICATION CIRCUITS

NJU6436

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.