#### PRELIMINARY

## 1/4 DUTY LCD DRIVER

#### ■ GENERAL DESCRIPTION

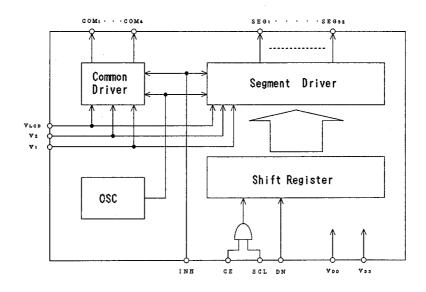
The NJU6437 is a 1/4 duty LCD driver for segment type LCD panel.

The LCD driver consists of 4-common and 32-segment drives up to 128 segments.

The rectangle outline is useful the COG applications.

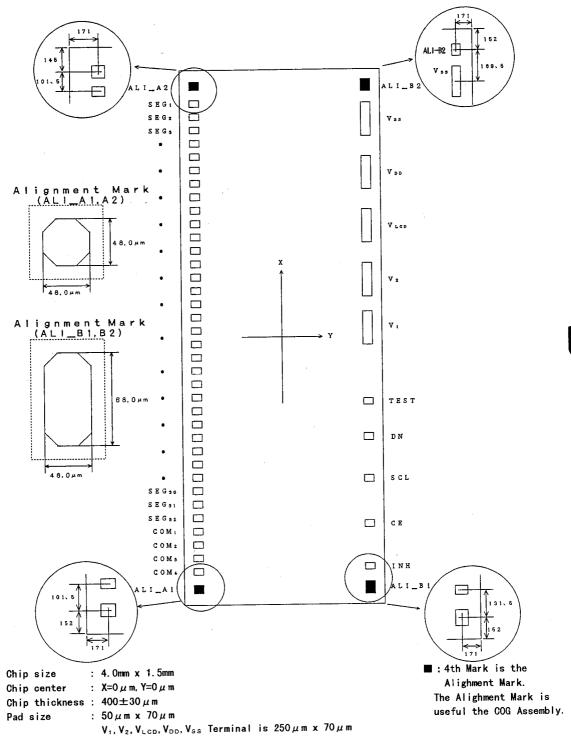
# PACKAGE OUTLINE




# **■** FEATURES

- 32 Segment Drivers
- Duty and Bias Ratio : 1/4Duty, 1/3Bias(up to 128 segments)
- Serial Data Transmission (Shift Clock 2MHz max.)
- Oscillation Circuit On-chip
- Display Off Function (INH Terminal)
- Operating Voltage --- 2.4~3.6V
- LCD Driving Voltage --- 6.0V Max.
- Package Outline Chip / Bumped Chip
- C-MOS Technology

NJU6437C


• a mas recimiency

# BLOCK DIAGRAM





#### PAD LOCATION



Bump material : Au

Bump height

: 25umTYP.



# PAD COORDINATES

Chip Size 4.0x1.5mm(Chip Center X=0  $\mu$  m, Y=0  $\mu$  m)

| No | PAD NAME          | X=(μm)  | Y=(μm)  | No          | PAD NAME          | X=(μm)   | Y=(μm)  |
|----|-------------------|---------|---------|-------------|-------------------|----------|---------|
| 1  | INH               | -1716.5 | -575.0  | 26          | SEG <sub>16</sub> | 253. 5   | 579. 0  |
| 2  | CE                | -1406.5 | -575.0  | 27          | SEG <sub>17</sub> | 153.5    | 579. 0  |
| 3  | SCL               | -1076.5 | -575.0  | 28          | SEG 1 8           | 53.5     | 579. 0  |
| 4  | DN                | -766.5  | -575.0  | 29          | SEG <sub>19</sub> | -46.5    | 579. 0  |
| 5  | TEST              | -485.0  | -575. 0 | 30          | SEG20             | -146.5   | 579. 0  |
| 6  | V <sub>1</sub>    | 100.0   | -575.0  | 31          | SEG <sub>21</sub> | -246. 5  | 579. 0  |
| 7  | V <sub>2</sub>    | 458.5   | -575. 0 | 32          | SEG <sub>22</sub> | -346.5   | 579. 0  |
| 8  | Vrço              | 858.5   | -575.0  | 33          | SEG <sub>23</sub> | -446. 5  | 579. 0  |
| 9  | V <sub>D D</sub>  | 1258.5  | -575. 0 | 34          | SEG <sub>24</sub> | -546. 5  | 579. 0  |
| 10 | Vss               | 1658.5  | -575.0  | 35          | SEG <sub>25</sub> | -646. 5  | 579. 0  |
| 11 | SEG₁              | 1753.5  | 579. 0  | 36          | SEG26             | -746. 5  | 579. 0  |
| 12 | SEG <sub>2</sub>  | 1653, 5 | 579. 0  | 37          | SEG <sub>27</sub> | -846. 5  | 579. 0  |
| 13 | SEG <sub>3</sub>  | 1553. 5 | 579. 0  | 38          | SEG <sub>28</sub> | -946. 5  | 579. 0  |
| 14 | SEG₄              | 1453. 5 | 579. 0  | 39          | SEG <sub>29</sub> | -1046.5  | 579. 0  |
| 15 | SEG₅              | 1353. 5 | 579.0   | 40          | SEG30             | -1146.5  | 579. 0  |
| 16 | SEG <sub>6</sub>  | 1253.5  | 579. 0  | 41          | SEG <sub>31</sub> | -1246.5  | 579. 0  |
| 17 | SEG <sub>7</sub>  | 1153. 5 | 579. 0  | 42          | SEG <sub>32</sub> | -1346.5  | 579. 0  |
| 18 | SEG <sub>8</sub>  | 1053.5  | 579. 0  | 43          | COM <sub>1</sub>  | -1446. 5 | 579. 0  |
| 19 | SEG <sub>9</sub>  | 953. 5  | 579. 0  | 44          | COM <sub>2</sub>  | -1546.5  | 579. 0  |
| 20 | SEG <sub>10</sub> | 853. 5  | 579.0   | 45          | СОМз              | -1646.5  | 579. 0  |
| 21 | SEG, 1            | 753.5   | 579. 0  | 46          | COM <sub>4</sub>  | -1746.5  | 579. 0  |
| 22 | SEG <sub>12</sub> | 653.5   | 579. 0  | ALIGNMENT   | AL I_A1           | -1848.0  | 579. 0  |
| 23 | SEG <sub>13</sub> | 553.5   | 579. 0  | AL I GNMENT | AL1_A2            | 1855. 0  | 579. 0  |
| 24 | SEG <sub>14</sub> | 453.5   | 579.0   | AL.1GNMENT  | AL I_B1           | -1848.0  | -579. 0 |
| 25 | SEG <sub>15</sub> | 353.5   | 579.0   | ALIGNMENT   | AL1_B2            | 1848. 0  | -579. 0 |



# TERMINAL DESCRIPTION

| NO.   | SYMBOL                   | FUNCTION                                                                                                                                                |
|-------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | INH                      | Display-Off Control Terminal: When display goes to off, the before display Off data in the shift-register is retained. "H": Display-Off "L": Display-On |
| 2     | CE                       | Chip Enable Signal Input Terminal :<br>"H" : LCD display data<br>"L" : Disable                                                                          |
| 3     | SCL                      | Serial Data Transmission Clock Input Terminal :<br>LCD display data are input synchronized SCL clock signal<br>rise edge.                               |
| 4     | DN                       | Serial Data Input Terminal<br>Data input timing : SCL clock rise edge                                                                                   |
| 6     | ٧,                       | LCD Driving Voltage Adjust Terminal                                                                                                                     |
| 7     | V <sub>2</sub>           | LCD Driving Voltage Adjust Terminal                                                                                                                     |
| 8     | V <sub>LCD</sub>         | Power Supply for LCD Driving                                                                                                                            |
| 9     | V <sub>DD</sub> .        | Power Supply (+3V)                                                                                                                                      |
| 10    | Vss                      | Power Supply ( 0V)                                                                                                                                      |
| 11~42 | SEG, ~ SEG <sub>32</sub> | LCD Segment Output Terminals                                                                                                                            |
| 43~46 | COM: ~ COM4              | LCD Common Output Terminals                                                                                                                             |

# FUNCTIONAL DESCRIPTION

# (1) Operation of each block

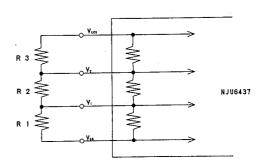
(1-1)Oscillation Circuit:

This circuits supply the basical clock signal to other circuits like as common driver and segment driver.

(1-2) Shift-Register

When the CE terminal is "H" (Enable mode), the display data is transferred to the shift-register synchronized by the shift clock on the SCL terminal.

(1-3) Common Divider Circuit


This circuit divides the oscillating signal to generate the common timing.

(1-4) Segment Divider Circuit

This circuit divides the oscillating signal to generate the segment timing.

(1-5) The LCD Driving Voltage Adjust circuit

The incorporated Bleeder Resistance sets 1/3 bias, and LCD Driver ability can be increased by connecting external resistance.

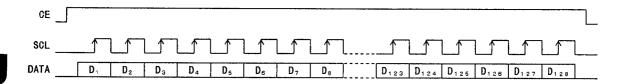




(2) Display Data input timing, correspond to segment and common terminal

When the CE terminal is "H" (Enable mode), the display data is transferred to the shift-register synchronized by the shift clock on the SCL terminal.

When the power is turned on, whole data in the shift-resister are "L".


Whole 128bits data transfer to the shift register. When the input data in less than 128 bits, parts which bit data is inputed corresponded to display, and segment which correspond to the rest part in "off".

In care of over then 128bits, front 128bits from fall edge of "CE" signal is valid.

• Input data correspond to Segment Status
The "H" input data correspond to segment "ON" and "L" correspond to "OFF".

| Data (D1···D128) | Segment Status |
|------------------|----------------|
| "H"              | ON             |
| ″L″              | 0FF            |

· Display Data Correspond to Segment Status



(2-3) Display Data Correspond to Segment and Common Terminals

| Segment           | Data                                                                         | COM <sub>1</sub> | COM2 | COM <sub>3</sub> | COM <sub>4</sub> |
|-------------------|------------------------------------------------------------------------------|------------------|------|------------------|------------------|
| SEG₁              | D <sub>1</sub><br>D <sub>2</sub><br>D <sub>3</sub><br>D <sub>4</sub>         | 0                | 0    | 0                | 0                |
| SEG <sub>2</sub>  | D <sub>5</sub><br>D <sub>6</sub><br>D <sub>7</sub><br>D <sub>8</sub>         | 0                | 0    | 0                | 0                |
| :                 | :                                                                            | :                | :    | :                | :                |
| SEG <sub>31</sub> | D <sub>121</sub> D <sub>122</sub> D <sub>123</sub> D <sub>124</sub>          | 0                | 0    | 0                | 0                |
| SEG <sub>32</sub> | D <sub>125</sub><br>B <sub>126</sub><br>b <sub>127</sub><br>D <sub>128</sub> | 0                | 0    | 0                | 0                |



# ■ ABSOLUTE MAXIMUM RATINGS

( Ta=25°C )

| PARAMETER             | SYMBOL                          | RATING             | UNIT |
|-----------------------|---------------------------------|--------------------|------|
| Operating Voltage (1) | VDD                             | -0.3 <b>~</b> +7.0 | ٧    |
| Operating Voltage (2) | VLCD                            | -0.3 ~ +7.0        | ٧    |
| Operating Voltage (3) | V <sub>1</sub> , V <sub>2</sub> | -0.3 ~ +7.0        | ٧    |
| Input Voltage         | ۷۱۸                             | −0.3 ~ VDD         | ٧    |
| Operating Temperature | Topr                            | −20 <b>~</b> +75   | °C   |
| Storage Temperature   | Tstg                            | −55 <b>~</b> +125  | °C   |

Note 1) If the LSI are used on condition above the absolute maximum ratings, the LSI may be destroyed. Using the LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor reliability.

Note 2) All voltage values are specified as  $V_{ss} = 0 \text{ V}$ 

Note 3) The relation:  $V_{LCD} \ge V_2 \ge V_1 \ge V_{ss}$  must be maintained.

Note 4) Decoupling capacitor should be connected between  $V_{\text{DD}}$  and  $V_{\text{SS}}$  due to the stabilized operation.

# **■** ELECTRICAL CHARACTERISTICS

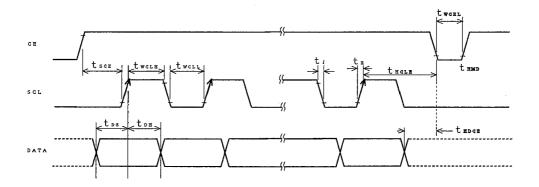
· DC Characteristics

 $(Ta=25^{\circ}C, V_{DD}=3.0\sim5.0V, V_{SS}=0V, V_{LCD}=6.0V)$ 

| PARAMETER                                          | SYMBOL                    | CONDI                                                              | TIONS                                                             | MIN                    | TYP                   | MAX                   | TINU | NOTE |
|----------------------------------------------------|---------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|-----------------------|-----------------------|------|------|
| Operating Recommend                                | V <sub>DD</sub>           | Voo Terminal                                                       |                                                                   | 2. 4                   | 3. 0                  | 3.6                   | ٧    |      |
| Voltage(1) Available                               | V <sub>DD</sub>           | V <sub>DD</sub> Terminal                                           | 2. 4                                                              | 3. 0                   | 5. 5                  | ٧                     |      |      |
| Operating Voltage (2)                              | VLCD                      | VLOD Terminal                                                      | 2. 0                                                              |                        | 6.0                   | ٧                     |      |      |
| Operating Voltage (3)                              | V <sub>2</sub>            | V <sub>2</sub> Terminal                                            |                                                                   | 2.0                    | 2/3VLCD               | VLCD                  | ٧    |      |
| Operating Voltage (4)                              | <b>V</b> 1                | V: Terminal                                                        | 0. 7                                                              | 1/3VLCD                | V <sub>2</sub>        | ٧                     |      |      |
| "H" Input Voltage                                  | <b>V</b> 1H               | CE, SCL, DN, INH T                                                 | erminals                                                          | 0. 7V <sub>DD</sub>    |                       | V <sub>DD</sub>       | ٧    |      |
| "L" Input Voltage                                  | Vil                       | CE, SCL, DN, INH T                                                 | erminals                                                          | Vss                    |                       | 0. 3V <sub>DD</sub>   | ٧    |      |
| "H" Input Current                                  | Iзн                       | CE, SCL, DN, INH T                                                 | erm., V <sub>IN</sub> =V <sub>DD</sub>                            |                        |                       | 5                     | μA   |      |
| "L" Input Current                                  | I <sub>1L</sub>           | CE, SCL, DN, INH T                                                 | erm., V <sub>IN</sub> =V <sub>SS</sub>                            |                        |                       | 5                     | μА   |      |
| "H" Output Voltage(1)                              | V <sub>OH (1)</sub>       | SEG₁~SEG₃₂ Ter                                                     | V <sub>LCD</sub> -0.6                                             |                        |                       | ٧                     | 5    |      |
| "L" Output Voltage(1)                              | <b>V</b> OL (1)           | SEG₁∼SEG₃₂ Term., I₀= 1 µ A                                        |                                                                   |                        |                       | V <sub>DD</sub> +0. 6 | ٧    | 5    |
| Middle Level<br>Voltage 1/3 (1)                    | <b>V</b> <sub>MS1/3</sub> | SEG <sub>1</sub> ~ SEG <sub>32</sub> Term., $I_0 = \pm 1 \mu A$    |                                                                   | 1/3V <sub>-6.6</sub>   | 1/3V <sub>LCD</sub>   | 1/3V <sub>L60</sub> 6 | ٧    | 5    |
| Middle Level<br>Voltage 2/3 (1) V <sub>MS2/3</sub> |                           | SEG <sub>1</sub> ~SEG <sub>32</sub> Term., I <sub>O</sub> = ±1 μ A |                                                                   | 2/3V <sub>L</sub> 6.06 | 2/3V <sub>LCD</sub>   | 2/3V <sub>L6</sub> °6 | ٧    | 5    |
| "H" Output Voltage(2)                              | V <sub>OH (2)</sub>       | COM <sub>1</sub> ~ COM <sub>4</sub> Term                           | V <sub>LCD</sub> -0.6                                             |                        |                       | ٧                     | 6    |      |
| "L" Output Voltage(2)                              | Nor (5)                   | COM <sub>1</sub> ~ COM <sub>4</sub> Term                           | COM <sub>1</sub> ~COM <sub>4</sub> Term., I <sub>O</sub> = 30 μ A |                        |                       | Vss+0.6               | ٧    | 6    |
| Middle Level<br>Voltage 1/3 (2)                    | <b>V</b> мс1/3            | COM <sub>1</sub> ~ COM <sub>4</sub> . Term                         | 1/3V_6.6                                                          | 1/3VLCD                | 1/3V <sub>L8</sub> °6 | ٧                     | 6    |      |
| Middle Level<br>Voltage 2/3 (2)                    | V <sub>MC2/3</sub>        | COM₁∼COM₄ Term                                                     | 2/3V <sub>L6.0</sub> 6                                            | 2/3VLCD                | 2/3V <sub>L80</sub> 6 | ٧                     | 6    |      |
| Operating Current (1)                              | lss                       | V <sub>DD</sub> V <sub>DD</sub> =5                                 | .OV VLCD OPEN                                                     |                        | 16                    | 30                    | μA   |      |
|                                                    |                           | Terminal V <sub>DD</sub> =3                                        | OV VLCD OPEN                                                      |                        | 7. 5                  | 10                    | μΑ   |      |
| Operating Current (2)                              | Lco                       | V <sub>LCD</sub> Terminal                                          | V <sub>DD</sub> =3,0V<br>V <sub>LCD</sub> =6.0V                   |                        |                       | 12                    | μΑ   |      |
| Hysteresis Voltage                                 | Vн                        | CE, SCL, DN,                                                       | V⊳⊳=5. 0V                                                         | 0. 3                   | 0.6                   |                       | v    |      |
|                                                    |                           | INH Terminal                                                       | V <sub>DD</sub> =3. 0V                                            | 0. 3                   | 1.0                   |                       | V    |      |

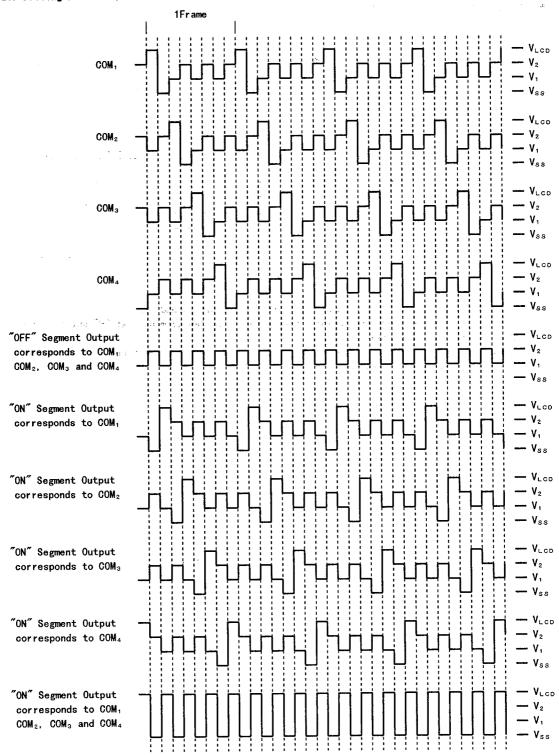
(Note 5) Segment terminals are open.

(Note 6) Common terminals are open.



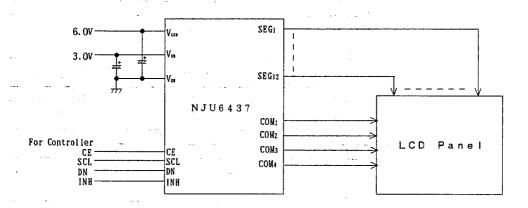

# · AC Characteristics

 $(Ta=25^{\circ}C, V_{DD}=3.0V, V_{SS}=0V, V_{LCD}=6.0V)$ 


| PARAMETER                | SYMBOL          | CONDI                                 | TIONS                  | MIN   | TYP | MAX | UNIT |
|--------------------------|-----------------|---------------------------------------|------------------------|-------|-----|-----|------|
| "L" Clock Pulse Width    | twcll           | SCL                                   |                        | 0. 25 | _   | _   | μs   |
| "H" Clock Pulse Width    | <b>t</b> wolh   | SCL                                   |                        | 0. 25 | _   | -   | με   |
| SCL Rise time, Fall time | tr, tr          | SCL                                   |                        |       | _   | 50  | ns   |
| Data Set-up Time         | tos             | DN, SCL                               | ,                      | 0. 25 | _   | _   | μs   |
| Data Hold Time           | t <sub>он</sub> | SCL                                   |                        | 0. 25 | _   |     | μs   |
| CE Set-up Time           | tsce            | CE, DN                                |                        | 1. 25 |     | _   | μs   |
| CE Hold Time             | tHCLE           | SCL, CE                               |                        | 1.00  |     | -   | μs   |
| "L" CE Pulse Width       | twceL           | CE                                    |                        | 4. 00 |     |     | μs   |
| Frame Frequency          | fo              | COM <sub>1</sub> ~ COM <sub>4</sub> , | V <sub>DD</sub> =5. 0V | 45    | 75  | -   | Hz   |
|                          |                 | SEG,~SEG32                            | V <sub>DD</sub> =3. 0V | 45    | 70  |     | 112  |

# - Input Timing Characteristics






# ■ LCD Driving Waveform (1/4DUTY - 1/3BIAS)





# APPLICATION CIRCUIT



(Note) The internal display data is undefined when  $V_{\text{DD}}$  is just turned on.

To avoid the meaningless display, please keep the INH terminal at "H" until proper display data has been transferred.

In order to set the initial condition, 128-bit blank data or the first 128-bit data to be displayed should be transferred.

# NJU6437

# **MEMO**

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.