
OM60N06SA OM60N05SA OM50N06ST OM50N06SA OM50N05SA OM50N05ST

LOW VOLTAGE, LOW R_{DS(on)} POWER MOSFETS IN HERMETIC ISOLATED PACKAGE

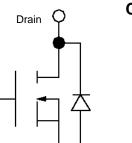
50V And 60V Ultra Low R_{DS(on)} Power MOSFETs In TO-257 And TO-254 Isolated Packages

FEATURES

- Isolated Hermetic Metal Packages
- Ultra Low R_{DS(on)}
- Low Conductive Loss/Low Gate Charge
- Available Screened To MIL-S-19500, TX, TXV And S Levels
- Ceramic Feedthroughs Available

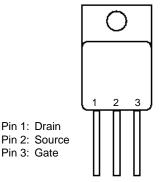
DESCRIPTION

This series of hermetic packaged MOSFETs are ideally suited for low voltage applications; battery powered voltage power supplies, motor controls, dc to dc converters and synchronous rectification. The low conduction loss allows smaller heat sinking and the low gate charge simpler drive circuitry.


MAXIMUM RATINGS (Per Device)

PART NO.	V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)	Package
OM60N06SA	60	.025	60	TO-254AA
OM50N06SA	60	.030	50	TO-254AA
OM50N06ST	60	.035	50	TO-257AA
OM60N05SA	50	.025	60	TO-254AA
OM50N05SA	50	.030	50	TO-254AA
OM50N05ST	50	.035	50	TO-257AA

3.1


Source

T-3 PIN CONNECTION

1 2 3

4 11 R1 Supersedes 3 02 R0

O-Gate

3.1 - 65

Pin 1: Drain

Pin 3: Gate

Pin 2: Source

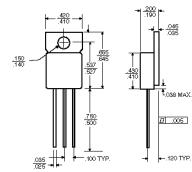
Omnirel 🖸

OM60N06SA - OM50N05ST

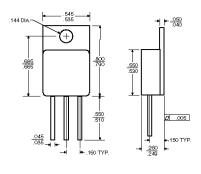
	Parameter	60N06SA	50N06ST 50N05SA	60N05SA	50N05ST 50N05SA	Units
V _{DS}	Drain-Source Voltage	60	60	50	50	V
V _{DGR}	Drain-Gate Voltage (R_{GS} = 1 M Ω)	60	60	50	50	V
V _{GS}	Gate-Source Voltage, Continuous	<u>+</u> 20	<u>+</u> 20	<u>+</u> 20	<u>+</u> 20	V
I _D @ T _C = 25°C	Continuous Drain Current ²	55	50	55	50	А
I _D @ T _C = 100°C	Continuous Drain Current ²	37	33	37	33	А
I _{DM}	Pulsed Drain Current ¹	220	200	220	200	А
P _D @ T _C = 25°C	Maximum Power Dissipation	100	100	100	100	W
P _D @ T _C = 100°C	Maximum Power Dissipation	40	40	40	40	W
Junction-To-Case	Linear Derating Factor ¹	.80	.80	.80	.80	W/°C
TJ	Operating and	55 to 150	EE to 150	55 to 150	55 to 150	°C
T _{stg}	Storage Temperature Range	-55 to 150	-55 to 150	-55 to 150	-55 to 150	
Lead Temperature	(1/16" from case for 10 secs.)	300	300	300	300	°C

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

THERMAL RESISTANCE

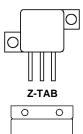

R _{th.IC} Junction-to-Case	1.25	°C/W

PACKAGE LIMITATIONS


	Parameters	TO254AA	TO-257AA	Unit
I _D	Continuous Drain Current	25	15	А
	Linear Derating Factor, Junction-to-Ambient	.020	.015	W/°C
R_{thJA}	Thermal Resistance, Junction-to-Ambient (Free Air Operation)	50	65	°C/W
	Linear Derating, Junction-to-Case	0.8	0.8	W/°C

3.1

T-3 MECHANICAL OUTLINE


M-PAK MECHANICAL OUTLINE

PACKAGE OPTIONS

MOD PAK

- Standard Products are supplied with glass feedthroughs. For ceramic feedthroughs, add the letter "C" to the part number. Example - OMXXXXCSA.
- MOSFETs are also available in Z-Pak, dual and quad pak styles. Please call the factory for more information.

6 PIN SIP

OM60N06SA ($T_{\rm C}$ =25°C unless otherwise specified)

$$\label{eq:Vis} \begin{split} V_{\rm Ls} = Mex \; Reit \\ V_{\rm Ls} = Mex \; Reit \; x \; 0.08 \; T_{\rm C} = 125 \; C \\ V_{\rm Cs} = \pm 20 \; V \end{split}$$
 $V_{DS} > I_{D(cr)} \times R_{D(cr)maso} V_{dS} = 10 V$ $V_{\rm ID} = 40 \text{ V}, I_{\rm D} = 50 \text{ A}, V_{\rm CS} = 10 \text{ V}$ V_{DS} > I_{Den} X R_{DS(m)max} I_D=25 A V_{DS} = 25 V $\frac{I_{SD} = 50 \text{ A}, V_{cs} = 0}{I_{SD} = 50 \text{ A}, \text{ divit} = 100 \text{ A} \text{ lis}}$ $V_{R} = 30 \text{ V}, T_{J} = 150 \text{ C}$ () 000 = non-repetitive, $T_1 = 25^{\circ}C$) $\frac{V_{DS} = V_{CS} I_D = 250 \, \mu A}{V_{CS} = 10 V, I_D = 25 \, A}$ $T_C = 100^{\circ}C$ $V_{\rm ID} = 40 \text{ V}, I_{\rm D} = 50 \text{ A}$ $R_{\rm S} = 50 \Omega, V_{\odot} = 10 \text{ V}$ $R_{G} = 50 \Omega, V_{GS} = 10 V$ (starting $T_{J}=25^{\circ}$ C, $I_{D}=I_{AB}$, $V_{DD}=25$ V) (pulse width limited $l_{\rm D} = 250 \, \mu {\rm A} \, {\rm V}_{\rm CS} = 0$ Test Conditions $\delta < 1\%$ non-repetitive, T₁ (repetitive or (repetitive or V_{cs}=0 f=1mHz N L A Typ. Max. Units N N N Q б < E 2 ₹₹ Ā 30 ۷ ᄔᆋᄔᆋ ର୍ଷ ରୁ ⊴∢ ∢ > ഗ < < > 2<u>5</u>0 ±10 **OM50N06S.A** ($\Pi_{\rm C}$ = 25°C unless otherwise specified) 8 8 88 ස දූ 8 යි 94 ස 8 <u>9</u> 8 48 <mark>8</mark> 숷 ලි සි සි *Pulsed: Pulse Duration ≤ 300µS, Duty Oycle ≤ 1.5% Min. 8 යි Electrical Characteristics - Source Drain Diock
 gs
 Forward Iransou nuver w

 C_{iss}
 Input Capacitance

 C_{iss}
 Output Capacitance

 C_{iss}
 Peuerse Transfer Capacitance

 C_{iss}
 Peuerse Transfer Capacitance

 Electrical Characteristics - Switching On
 Q₃ Total Gate Charge Electrical Characteristics - Switching Off Single Pulse Avalanche Energy Source Drain Current (pulsed) Forward On Voltage Repetitive Avalanche Energy **Bectrical Characteristics - Dynamic** Reverse Recovery Charge Reverse Recovery Ourrent Reverse Recovery Time Gate Threshold Voltage Static Drain-Source On On State Drain Current Tum-On Ourrent Slope Drain Qurrent ($V_{S}=0$) Off Voltage Rise Time **Electrical Characteristics - OF Electrical Characteristics - ON** Source Drain Current Gate-Body Leakage Breakdown Voltage Avalanche Current Avalanche Current Zero Gate Voltage Total Gate Charge Cross-Over Time **Avalanche Characteristics** Current ($V_{\rm INS} = 0$) fum-On Time Drain-Source Resistance **Rise Time** Fall Time V_{(BRDSS} (di/dt)_{en} Pos(a) 1985 ((tot)) Ē <u>_____</u>___ 8 щ Щ 8 đ Ŕ ĥ S=10V $V_{DS} > I_{D(m)} \times R_{DS(m)maso} V_{GS} = 10 V$ V_{DS} = Max. Rat. V_{DS} = Max. Rat. × 0.8, T_C = 125°C ¥08≓ I₁₂₀ = 55.A, V_{cos} = 0 I₄₂₀ = 55.A, di/dt= 100 A/µs V_R = 25 V, T_J= 150°C non-repetitive, T_{J} = 100°C) $V_{\rm ID} = 25 \text{ V}, I_{\rm D} = 30 \text{ Å} V_{\odot}$ non-repetitive. $T = 25^{\circ}$ C) $\frac{V_{DS} = V_{dS}, I_D = 250 \, \mu A}{V_{dS} = 10 \, V, I_D = 30 \, A}$ $T_C = 100^{\circ}C$ $V_{\rm DD} = 40 \text{ V}, \text{ I}_{\rm D} = 55 \text{ A}$ $\text{R}_{\rm G} = 50 \Omega, \text{ V}_{\infty} = 10 \text{ V}$ ₹ V_{DS} > I_{Don} X R_{DS(onmaso} V_{DS} = 25 V (starting $T_{\rm J}$ = 25°C, $I_{\rm D}$ = $I_{\rm He}$, $V_{\rm DD}$ = 25V) $h_{\rm D} = 250 \,\mu{\rm A}, \,{\rm V}_{\rm CS} = 0$ (pulse width limited Test Conditions $\delta < 1\%$ (repetitive or $V_{GS} = \pm 20 \overline{V}$ (repetitive or V_{cs}=0 f=1 mHz ۲ H Min. Typ. Max. Uhits Sr Sr St പ്പ ∢ ₹₹ Ł ԱԱԱ Q ਨ ਨ ਨ E E ∢ > ЗC < ഗ < < > Ч₹ 814 £2 £3 520 8 025 4 <u>유 영</u> 6 8 比 5 22 स्र 250 250 250 우응[©] ß 8 <u>9</u> 8 *Pulsed: Pulse Duration ≤ 300µS, Duty Oyde ≤ 1.5% 8 ß Electrical Characteristics - Source Drain Diocle Electrical Characteristics - Switching Of C_{les} Reverse Transfer Capacitance Electrical Characteristics - Switching Or Single Pulse Avalanche Energy Source Drain Current (pulsed) Repetitive Avalanche Energy l_{Don} On State Drain Current Electrical Characteristics - Dynamic Forward Transconductance Input Capacitance Reverse Recovery Charge Reverse Recovery Current **Reverse Recovery Time** Electrical Characteristics - ON* V_{cstn} Gate Threshold Voltage R_{tstin} Static Drain-Source On Drain Current ($V_{GS} = 0$) Tum-On Current Slope Off Voltage Rise Time Electrical Characteristics - OH Source Drain Current Gate-Body Leekage Output Capacitance Forward On Voltage Breakdown Voltage Avalanche Ourrent Avalanche Ourrent Zero Gate Voltage Fotal Gate Charge Avalanche Characteristics Oross-Over Time Outrent ($V_{DS} = 0$) Tum-On Time Drain-Source Resistance **Rise Time** FallTime (di/dt)_{on} Verices R_{D8(or)} (In(Vott)) (ju) சு பீ பீ பீ பீ or <u>∎</u> щ Щ 8 g ų Æ ď 6 6 8

OM60N06SA - OM50N05ST

3.1

$\mathrm{T_{c}}\!=\!25^{\circ}\mathrm{C}$ unless otherwise speaified)
OM50N06ST

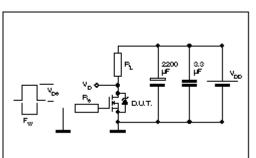
3.1

L L L	Avalanche Characteristics	Min.	Typ. M	Max. Un	Units Te	Test Conditions	Avalanc	Avalanche Characteristics	М.	Ę	Max Un	Units Test Conditions
s H	Avalanche Qurrent			۹ 8	A (re Do	(repetitive or non-repetitive, T ,= 25°C)	<u>t</u>	Avalanche Qurrent			¥ 8	 (repetitive or non-repetitive T,=25°C)
EAR -	Single Pulse Avalanche Ernergy		4	400 m	<u>ہ (تا</u> س	(starting T = 25°C, h= 1,a, V,m = 25 V)	EAS	Single Pulse Avalanche Energy		ю	520 mJ	$(\text{starting T}_{J} = 25^{\circ})$
-	Repetitive Avalanche Energy		-	۳ 00	මිරි ලි	(pulse width limited by T _{imme} , 8 < 1%)	Е ^{ун}	Repetitive Avalanche Energy		÷	130 m.	
ä	Avalanche Qurrent			⊲ 06	A (re no	(repetitive or non-repetitive, T_r= 100°C)	ë#	Avalanche Qurrent			34 A	
Electrical	Electrical Characteristics - OFF						Electric	Electrical Characteristics - OFF				
SSCIEEJ∧	Drain-Source Breakdown Voltage	09			-a ^	$l_{\rm B} = 250 \mu {\rm A_{\cdot}} {\rm V}_{\rm cs} = 0$	Vergens	, Drain-Source Breakdown Voltage	ß		Λ	
SSE	Zero Gate Voltage Drain Ourrent (V _{rss} =0)		64 22	лл 80 80	°° ⊳r	V _{os} = Max. Rat. V _{os} = Max. Rat. x08, T _c = 125°C	<u>88</u>	Zero Gate Voltage Drain Ourrent (V _{es} =0)		~ ₽	250 250 11 000	A V. _{es} =Max. Rat. A V. _{es} =Max. Rat. x0.8, T.c=125°C
80	Gate-Body Leakage Current (V = 0)		·+I	±100	nA V _e	$V_{ds} = \pm 20 V$	80	Gate-Body Leakage Ourrent (V = 0)		Ŧ	±100 nA	
Electrical	Electrical Characteristics - ON*						Electric	Electrical Characteristics - ON*				
Vasan	Gate Threshold Voltage	2	ŀ	4	$\sqrt{\sqrt{b}}$	$\bigvee_{\mathbf{DS}} = \bigvee_{\mathbf{CS}} \mathbf{I}_{\mathbf{D}} = 250 \mu \mathrm{A}$	V _{GS(h)}	Gate Threshold Voltage	0	_	4 V	$V_{DS} = V_{dS}$, $I_D = 250 \mu A$
R. _{DS(cn)}	Static Drain-Source On		<u>у</u> ,		ν γ	$V_{ds} = 10 V, I_D = 25 A$	R. _{DS(cn)}			Q ·	052 U	
_	Hesistance On State Divin O word	G	4	990 990		$c = 100^{\circ}$	_	Chestance Chestance Chestance	55	9	ଅ ଜ ଦେ	
Electrical	Igay or come main current. Electrical Characterica: Dimensio	3				$\sqrt{DS} \sim D(\alpha) \sim 1$		Igay Aroans crain current Clockical Asmacharidiae - Dimensia	3			v ⊃l _ CS ~ D(cu) ^ DS(cu)max v GS _ l ⊃ v
	Contract Francisco - Loy Rillic	Ļ	╞		2			Enviored Frances - Lynall IIC	Q T	-	0	F
සීථ්	Forward Italiasunductance	2	2000			<u> </u>	ඝීථ්	Folward Hariswi kukwa ike	₽	2500		<u> </u>
e د	Output Capacitance	-	8	. <u>a</u>		V _{ss} =0	្រី	Output Capacitance		80	. Ľ	
ු වී	Reverse Transfer Capadiance		300	<u>ā</u>		f=1 mHz) ම ල	Reverse Transfer Capacitance		52	<u>ч</u>	
Electrica	Electrical Characteristics - Switching On						Electric	Electrical Characteristics - Switching On				
T d(cm)	Tum-On Time		\$2	ć	uS V_	$V_{DD} = 25 V_{DD} = 29 A_{DD}$	T dan)	Tum-On Time		110	ŭ	$nS = V_{2D} = 25 V_1 b_2 = 55 A_2$
t, , , , , , ,			8	Ċ,	-	$H_{g} = 4.7\Omega$, $V_{gs} = 10V$	t, 1			300	Ë,	_
(dt/dt),,,	Tum-On Qurrent Slope		500	¥	°Ω Ω	V ₂₀ =40V I ₅ =50A R ₆ =50.0 V ₆₈ =10V	(di/dt)_m	, Tum-On Qurrent Slope		160	¥.	AvµS V ₂₀₀ = 40 V, b = 555 A R ₆ = 50 Ω, V ₆₀₆ = 10 V
Q.	Total Gate Charge		45	ŭ	nC V_	$V_{BD} = 40 \text{ V} _{\mathbf{D}} = 50 \text{ A} V_{CS} = 10 \text{ V}$	0 a	Total Gate Charge		8	0u	
Electrical	Electrical Characteristics - Switching Off						Electric	Electrical Characteristics - Switching Off				
	Off Voltage Rise Time		160	ć	 S	$V_{BD} = 40 \text{ V}, \mathbf{l}_{D} = 50 \text{ A}$	T _{r(Vot)}	Off Voltage Rise Time		160	é	-
ل د	Fall Time Cross-Over Time		<u>ନ</u> ଜି	ćč		R ₆ =50.0, V _{c8} =10 V	┵┙	Fall Time Cross-Over Time		160 320	22	ກS R ₆ =50.Ω,V ₆₆ =10.V ກS
Electrical	Electrical Characteristics - Source Drain Diode	-			_ !		Electric	Electrical Characteristics - Source Drain Diode	jóde		-	
<u>s</u>	Source Drain Ourrent Source Drain Ourrent (pulseed)		~ 0	4 9 20 20	4 <		<u>8</u> *	Source Drain Ourrent Source Drain Ourrent (souteool)		4, 6	× ∼ %8	
_co ∧	Forward On Voltage		4		T	∞ =50 Å, V, ∞ =0	wos G	Forward On Voltage		1-		/ Is=56A.V. = 0
tr	Reverse Recovery Time	$\left \right $	+- 	-	~	s = 50 A divit = 100 A/us +5cmC	r. *	Reverse Recovery Time		÷	100 NS	<u> </u>
്_്	Reverse Recovery Charge Reverse Recovery Current		<u> </u>	00 20 24	r Qr∢		ð	Reverse Recovery Charge Reverse Recovery Current			25 5 7	

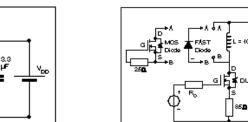
OM60N06SA - OM50N05ST

OM50N05SA ($T_c = 25$ °C unless otherwise specified)

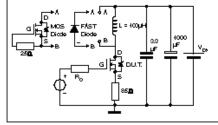
Avaianche Unaracterisuos	NIN.	yp.	IVEX.		lest conditions	Avaianche Unaracteristics	Y	ġ.	-		
Ing Avalanche Ourent			8	A	(repetitive or	I Are Avalanche Ourrent			8	∢	
					nontrepetitive, L = 25 U)			_	2	_	non-repetitive, I = 25°U)
E. E. Single Hulse Avalanche Ernergy			400	G	(starting 1 , =25°C, L=1 V=25V)	Erec Single Hulse Avalanche Energy	:nergy		0	2	(starting 1,=25°C, L=1 V =25 V)
			122	1	D = AB + DD = 20 + 10		-		< T	_	D - AB + D - 20 - 2
E.A. hepeutive Avalanche Erleigy			M	Ē	(pulse wiam irrified by T _{imme} δ < 1%)	Ear repaire waarone crergy	ergy		2	2	(pulse wiαminited by T _{imes} δ < 1%)
I Avalanche Current			30	A	(repetitive or	Ime Avalanche Ourrent			8	∀	(repetitive or
					non-repetitive T,= 100°C)						non-repetitive T_ = 100°C)
Electrical Characteristics - OFF						Electrical Characteristics - OFF					
Viences Drain-Source	8			٨	$I_{\mathbf{b}} = 250 \mu A$, $V_{\mathbf{cs}} = 0$	Viences Drain-Source	8	_	-	>	$ _{B} = 250 \mu A_{CS} = 0$
Iss Zero Gate Voltage			250		V _{os} =Max. Plat.	Isse Zero Gate Voltage			820 820		V _{os} =Max. Pat.
			1000	μΑ	V_{BS} = Max Rat. x08. T_c = 125°C				1000	μÅ	V_2 = Max Rat. x08. T_c = 125°C
Icms Gate-Body Leakage			±100	nÅ	$V_{ds} = \pm 20 V$	I _{css} Gate-Body Leakage			00 F∓	Å.	$V_{cs} = \pm 20 V$
Our ent ($V_{ss} = 0$)						$\frac{\text{Outrent}(V_{DS} = 0)}{\text{Outrent}(V_{DS} = 0)}$		_			
Electrical Characteristics - ON*						Electrical Characteristics - ON*					
V _{os(n)} Gate Threshold Voltage	2		4	ν	$V_{DS} = V_{dS}$, $I_D = 250 \mu$ Å	V _{cstn} , Gate Threshold Voltage	0		4	$^{\wedge}$	$V_{BS} = V_{GS}$, $I_D = 250 \mu \text{A}$
			.028	С	$V_{ds} = 10 V, I_{b} = 25 A$				8	G	$V_{cs} = 10 V, I_{b} = 25 A$
			.066	Ω	$T_{c} = 100^{\circ}$ C				990		$T_c = 100^{\circ}C$
Igon, On State Drain Ourrent	50			A	$V_{DS} > I_{D(co)} \times \Pi_{DS(co) matrix} V_{CS} = 10 V$	Ison, On State Drain Ourrent	20			A	$V_{DS} > I_{D(co)} \times P_{DS(co) mare} V_{GS} = 10 V$
Electrical Characteristics-Dynamic						Electrical Characteristics - Dynamic	ric				
g B Forward Transconductance	17			S	$V_{DS} > I_{D(co)} \times \mathbb{P}_{DS(co)(max)} I_D = 25 \text{ A}$	g B Forward Transconductance	ce 17			S	$V_{DS} > I_{D(c)} \times \mathbb{P}_{DS(c) IDS}$
Cies Input Capacitance		2000		Ц	V _{D6} =25 V	Ckes Input Capacitance		2000	0	Ц	V _{DS} =25 V
		ĝ		Ц	$V_{gs}=0$			1000	0	Ц	$V_{gs}=0$
Cress Reverse Transfer Capacitance		300		pF	f = 1 mHz	C. C. Reverse Transfer Capacitance	tance	300	0	ЪГ	f = 1 mHz
Electrical Characteristics - Switching On	u					8	ing On				
T _{den} Turn-On Time		ф		Sn	V _{bb} =25V, b =29A	T _{den} Turn-On Time		₽		б	V ₂₀ =25V, I ₀ =29A
		8		nS	$\mathbf{R}_{\mathbf{G}} = 4.7\Omega_{\mathbf{G}} \tilde{\mathbf{V}}_{\mathbf{GS}} = 10 \mathrm{V}$			8		S	$R_{g} = 4.7\Omega$, $V_{gs} = 10V$
(di/dt),, Turn-On Ourrent Slope		200		srlve	$V_{ab} = 40 V, I_{b} = 50 A$ B = 50 0 V = = 10 V	(dildt)_ Turn-On Ourrent Slope		200	0	srlve	V ₂₀ =40V, I ₀ =50A B.=500 V=10V
Q. Total Gate Charge		Ą		Q	V.m = 40 V. h = 50 A. V. m = 10 V	Q. Total Gate Charge		\$		Q	Vm = 40V, h = 50A, Vm = 10V
trical	ff.					Electrical Characteristics - Switching Off	ing Off	_	_		3
T _{river} Off Voltage Rise Time		160		ъ	$V_{DD} = 40 V, I_D = 50 A$	T _(veg) Off Voltage Rise Time		160	0	δ	$V_{ab} = 40 V_{ab} = 50 A_{ab}$
		8 j		ဖ	R ₆ =50Ω,V ₆₆ =10V			81		ဖု	$R_{G} = 50 \Omega_{c} V_{GS} = 10 V$
t _{arres} Cross-Over Ime	-	8		ž		t _{ares} Cross-Over lime		8		22	
Electrical Characteristics - Source Drain Diode	nDiode	Ī	ſ			Electrical Characteristics - Source Drain Diode	e Drain Diodk		-		
			8	A					8	∢	
Isw* Source Drain Ourrent (pulsed)			200	A		Isow Source Drain Ourrent (pulsed)	sed)		80		
V _{so} Forward On Voltage			2	٧	<mark>ao</mark> =50 A, V _{ao} =0	Vac Forward On Voltage		_	0		∞ =50A,V ∞ =0
t <i>r</i> Reverse Recovery Time			150	S	ו <mark>אי</mark> = 50 A, di/dt = 100 A/µs ער – פח ערד – זוברייירי	tr Reverse Recovery Time			120	б	<mark>so</mark> =50.A, di/dt = 100.A/us \/ = 30.\/ T = 1600.
Q., Reverse Recovery Charge I Reverse Recovery Charge			0.2	ОЧЧ))]	Qr, Reverse Recovery Charge			0.2	Q∢	$\sum_{i=1}^{n} \frac{1}{i} \cdot \sum_{i=1}^{n} \frac{1}{i} $
		ļ	-	ć					-	(
"Mulsed: Muse Luration ≤ 300µ5, Luty Cycle ≤ 1.5%	J)de≤1.	ŝ				*Hulsed: Hulse Luration ≤ 300µS, Lutry Cycle ≤ 1.5%	⊔uny uyae≤	15% %			


CMISONOSST ($T_c = 25^{\circ}C$ unless otherwise specified)

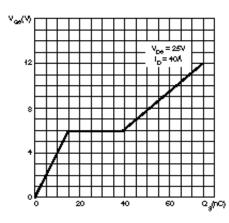
Omnirel 🖸


3.1

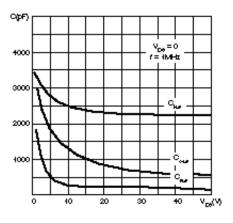
OM60N06SA - OM50N05ST


3.1 - 69

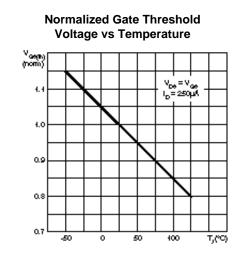
Switching Times Test Circuits For Resistive Load

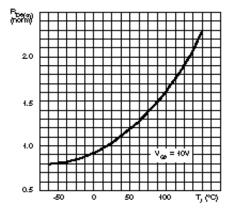


Test Circuit For Inductive Load Switching And Diode Reverse Recovery Time



TYPICAL CHARACTERISTICS


Gate Charge vs Gate-Source Voltage


Capacitance Variations

3.1

Normalized On Resistance vs Temperature

Committed 🖾 205 Commond Street Lournington, MA 01153 USA (500) 531-5775 FAX (500) 537-6245