Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB960, OPB970, OPB980, OPB990 Series

Features:

- Choice of logic and output driver circuits
- Choice of aperture size, covered or open
- Wire or PCB leads
- Choice of mounting features
- Direct TTL, LSTTL, CMOS Interface

Description:

The OPB960/970/980/990 series of non-contact Photologic ${ }^{\circledR}$ slotted optical switches provides flexibility in meeting application specific requirements for the design engineer.

Building from a standard housing with a $0.125^{\prime \prime}(3.18 \mathrm{~mm})$ wide slot, the user can specify output logic state, output driver circuit, aperture width, aperture surface and mounting tab locations. Furthermore, an option of wire or PCB leads allows electrical interface flexibility.

The device body is an opaque plastic which minimizes sensitivity to both visible and near-infrared external light sources which may impact operation. Aperture width choices provide different optical resolution for motion sensing. A covered aperture provides dust protection, while an open aperture provides maximum protection against external light sources.

Electrical operation is over a wide supply voltage range. LED emissions are near-infrared ($850-940 \mathrm{~nm}$).
Detector digital output logic choices of buffer or inverter with totem-pole or open-collector driver circuit simplify interface for various electrical requirements.

Custom electrical, wire and cabling services are available.
Contact your local representative or OPTEK for more information. Compliant to EU RoHS Directive 2002/95/EC

Applications:

- Speed and direction indication
- Rotary encoders
- Mechanical switch replacement
- Mechanical limit indication
- Printers - Top of form, End of travel, Home position.
- Sliding Door Automotive and Lift gate applications

Part Number Guide

OPB960, OPB970, OPB980, OPB990 Series

Notes:
(1) RMA flux recommended. Duration can be extended to 10 seconds max.
(2) Feature controlled at body.
(3) Highly activated water soluble fluxes may attack plastic. Recommend trial to verify application.
(4) Maximum lead soldering temperature [1.6 mm from case for 5 seconds with soldering iron] $260^{\circ} \mathrm{C}$.
(5) Cathode lead may be shorter.
(6) Part number marking may be on any side.

OPB960, OPB970, OPB980, OPB990 Series

PACKAGE OUTLINE for OPB980 and OPB990 Series

TABLE 2

Wire Color	Function
Red	Anode
Black	Cathode
White	Vcc
Blue	Output
Green	Ground

APERTURE WIDTH GUIDE		
CODE	LED	SENSOR
55	$.050^{\prime \prime}[1.27 \mathrm{~mm}]$	$.050^{\prime \prime}[1.27 \mathrm{~mm}]$
51	$.050^{\prime \prime}[1.27 \mathrm{~mm}]$	$.010^{\prime \prime}[0.25 \mathrm{~mm}]$
11	$.010^{\prime \prime}[0.25 \mathrm{~mm}]$	$.010^{\prime \prime}[0.25 \mathrm{~mm}]$
Lengths are $.050^{\prime \prime}[1.27 \mathrm{~mm}]$		

DIMENSIONS ARE IN INCHES AND [MILLIMETERS]. TOLERANCES ARE $\pm .010[0.25]$

Notes:
(7) Wire is 26AWG, UL Rated PVC insulation.
(8) Ideal torque for bolt or screw 0,45 to $0,68 \mathrm{Nm}$ (4 to 6 Lb -in).
(9) When using a thread lock compound, ND Industries "ND Vibra-Tite Formula 3" will avoid stress cracking plastic.
(10) Plastic is soluble in chlorinated hydrocarbons and ketones. Methanol or isopropanol are recommended as cleaning agents.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB960, OPB970, OPB980, OPB990 Series

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Input Diode (E)	
Input Diode Power Dissipation	$100 \mathrm{~mW}^{(11)}$
Input Diode Forward D.C. Current, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$40 \mathrm{~mA}^{(14)}$
Input Diode Reverse D.C. Voltage, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2 V
Sensor (S)	
Supply Voltage (V $\mathrm{Vcc}^{\text {to }}$ Ground)	$18 \mathrm{~V}^{(13)}$
Output Photologic ${ }^{\circledR}$ Power Dissipation	$200 \mathrm{~mW}^{(12)}$
Voltage at Output Lead (Open-Collector Output), $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	35 V
Short Circuit Output Current to Ground (Ios) 1 sec Max.	30 mA

Notes:

(11) Derate linearly $2.22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(12) Derate linearly $4.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(13) Prior to 2004 Vcc was limited to 5.5 V maximum.
(14) Do not connect input diode directly to a voltage source without an external current limiting resistor.

Block Diagram

Inverter Totem-Pole OPB962/ OPB972/ OPB982/ OPB992

Buffer Open-Collector OPB961/ OPB971/ OPB981/ OPB991

Inverter Open-Collector OPB963/ OPB973/ OPB983/ OPB993

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB960, OPB970, OPB980, OPB990 Series

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)						
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode (See OP140 / OP240 LED for additional information)						
V_{F}	Forward Voltage	-	-	1.70	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Coupled (See OPL560 Detector for additional information)						
$\mathrm{V}_{\text {cc }}$	Operating D.C. Supply Voltage	4.5	-	16	v	
$\mathrm{I}_{\text {cc }}$	Supply Current	-	-	12	mA	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 16 V
Voı	Low Level Output Voltage: Buffer Totem-Pole OPB960,OPB970 OPB980,OPB990 Buffer Open-Collector OPB961,OPB971 OPB981,OPB991	-	-	0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(14)} \end{aligned}$
	Inverter Totem-Pole OPB962,OPB972 OPB982,OPB992 Inverter Open-Collector OPB963,OPB973					$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage: $\begin{array}{ll}\text { Buffer Totem-Pole } & \text { OPB960,OPB970 } \\ \text { OPB980,OPB990 }\end{array}$	$\mathrm{V}_{\mathrm{cc}}-2.1$	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=800 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA} \end{aligned}$
	Inverter Totem-Pole OPB962,OPB972 OPB982,OPB992					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=800 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(14)} \end{aligned}$
I_{OH}	High Level Output Current: Buffer Open-Collector OPB961,OPB971 OPB981,OPB991	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA} \end{aligned}$
	$\begin{array}{ll}\text { Inverter Open-Collector } & \begin{array}{ll}\text { OPB963,OPB973 } \\ \text { OPB981,OPB991 }\end{array}\end{array}$					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(14)} \end{aligned}$
$\mathrm{I}_{\mathrm{F}}(+)$	LED Positive-Going Threshold Current ${ }^{(16)}$	-	-	15	mA	$\mathrm{V}_{\text {cC }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}(+) / \mathrm{I}_{\mathrm{F}}(-)$	Hysteresis Ratio	-	1.5	-	-	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	Output Rise Time, Output Fall Time	-	70	-	ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\text {f peak }}=15 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $100 \mathrm{kHz} \text { square wave, } \mathrm{C}=10 \mathrm{pF} \text { max. }$
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time Low to High, High to Low	-	5.0	-	$\mu \mathrm{s}$	$\begin{aligned} & R_{L}=360 \Omega \text { to } G N D \text { (Totem-Pole) } \\ & R_{L}=1 \mathrm{~K} \Omega \text { pull-up (Open-Collector) } \end{aligned}$

Notes:

14) Normal application would be with light source blocked, simulated by $I_{F}=0 \mathrm{~mA}$.
15) All parameters are tested using pulse techniques.
16) An increasing current applied to the LED which causes the output logic state to change. For proper application IF(+), LED current, should be more than the stated maximum.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

Tr Electronics

 OPB960, OPB970, OPB980, OPB990 Series

Logic Output vs Top to Bottom Bocking Distance (Y-Axis Blocked)

