POWER MANAGEMENT INTEGRATED CIRCUITS (PMICS) NXP PMICs are highly integrated, high-performance power management solutions for automotive, consumer and industrial markets. ### **OVERVIEW** Designed to offer exceptional integration for a wide range of devices. They combine: - Power management - System control and Interfaces - Battery management - Scalable functional safety - System-specific functions - Advanced configurability Our PMICs provide scalable, robust and proven platform solutions for our i.MX applications processors, networking and other processors. Using high-performance process technologies, our PMICs offer high-efficiency solutions designed to extend battery life, reduce power dissipation and minimize EMC. These PMICs bring an advanced level of configurability and programmability at the system level. A single device can be easily configured to power a wide range of processors or FPGAs. One-time programmable (OTP) memory stores configuration without the need for external memory. ### **KEY FEATURES** - Switching and linear regulators - Battery management functions - Optimized power modes management - OTP memory for flexible configurability - System interface and control for advanced scalability - One-stop customer service and support as part of reference design platforms - Auto-sync signaling enables all devices to be synchronized and act as one single PMIC - Advanced functional safety architecture # TYPICAL PMIC BLOCK DIAGRAM Battery Charger Safety State Multiple Low-Voltage Buck SMPS Sequence Control Monitoring OTP Multiple Low-Voltage Low-Voltage Low-Voltage Low-Voltage Low-Voltage Low-Voltage Low-Voltage # NXP CONFIGURABLE ATTACH POWER MANAGEMENT IC PORTFOLIO | PMIC | Operating
Voltage (V) | Buck /
Boost | LDO | Ambient
Temp Range
(°C) | ASIL | Special Features | Package | Associated NXP
Processor | Enablement | Other
Processors | |---------|--------------------------|-----------------|-----|-------------------------------|------------------|---|-----------------------|---|--|---| | PCA9420 | 2.5-5.5 | 2 | 2 | -40 to +85 | | Low power with
ship mode
Linear battery
charger integrated | HVQFN24
or WLCSP25 | i.MX RT600
i.MX RT500 | BSP available | | | PCA9450 | 2.7-5.5 | 6 | 5 | -40 to +105 | | | HVQFN56 | i.MX 8M Mini
I.MX 8M Nano
I.MX 8M Plus | Patch available
BSP available
Under
development | | | PF0100 | 2.8–4.5 | 7 | 6 | -40 to +105
-40 to +85 | QM | Coincell charger | HVQFN56 | i.MX 6S/D/Q/QP/SL/SX | BSP available | | | PF0200 | 2.8–4.5 | 5 | 6 | -40 to +105
-40 to +85 | QM | Coincell charger | HVQFN56 | i.MX 6SL/SX | BSP available | | | PF1510 | 2.5–6.0 | 3 | 3 | -40 to +105
-40 to +85 | QM | Very low power
Coincell charger | HVQFN40 | i.MX 7ULP, 6UL, 6ULL,
6ULZ | BSP available | | | PF1550 | 2.5–6.0 | 3 | 3 | -40 to +105
-40 to +85 | QM | Linear battery and coincell charger, very low power | HVQFN40 | i.MX 7ULP, 6UL, 6ULL | BSP available | | | PF3000 | 2.8–5.5 | 5 | 6 | -40 to +105
-40 to +85 | QM | Coincell charger | HVQFN48 | i.MX 7S/D i.MX 6UL | BSP available | | | PF3001 | 2.8–5.5 | 3 | 6 | -40 to +105
-40 to +85 | QM | Coincell charger | HVQFN48 | i.MX 6UL | | | | PF4210 | 2.8–4.5 | 7 | 6 | -40 to +105
-40 to +85 | QM | Coincell charger | HVQFN56 | i.MX 8MQ, 8MD | BSP available | | | PF5200 | 2.7-5.5 | 2 | 0 | -40 to +125 | ASIL
B/
QM | Watchdog,
multiphase | FC-QFN32 | S32R45, LX2160 | | EyeQ4, FPGA,
Renesas R-Car
M3, H3 | | PF7100 | 2.7-5.5 | 5 | 2 | -40 to +125
-40 to +105 | ASIL
B/
QM | Watchdog,
AMUX, multiphase | HVQFN48 | i.MX 8X/XL | BSP available | | | PF8100 | 2.7–5.5 | 7 | 4 | -40 to +85
-40 to +105 | QM | Watchdog,
AMUX, multiphase | HVQFN56 | i.MX 8, i.MX 8X, S32V
LS1043/LS1046/LA1575/
LA9358/LX2160 | BSP available | FPGA,
Renesas R-Car
M3, H3 | | PF8101 | 2.7–5.5 | 5 | 3 | -40 to +105 | QM | Watchdog,
AMUX, multiphase | HVQFN56 | i.MX 8, i.MX 8X | BSP available | | | PF8200 | 2.7–5.5 | 7 | 4 | -40 to +105 | ASIL
B | Watchdog,
AMUX, multiphase | HVQFN56 | i.MX 8, i.MX 8X, S32V
LS1043/LS1046/LA1575/
LA9358/LX2160 | BSP available | FPGA,
Renesas R-Car
M3, H3 | | PF8201 | 2.7–5.5 | 5 | 3 | -40 to +105 | ASIL
B | Watchdog,
AMUX, multiphase | HVQFN56 | i.MX 8, i.MX 8X | BSP available | | | PF8121 | 2.7–5.5 | 7 | 4 | -40 to +85 | QM | Watchdog,
AMUX, multiphase | HVQFN56 | i.MX 8M Mini | BSP available | | | VR5000 | 2.8–4.5 | 4 | 5 | -40 to +105 | QM | | HVQFN56 | LS1020/21/23/24/26/28/4
3/46,T1013/23 | BSP available | | | VR5100 | 2.8–5.5 | 4 | 6 | -40 to +105 | QM | | HVQFN48 | LS1012 | BSP available | | ### NXP CONFIGURABLE COMPANION POWER MANAGEMENT IC PORTFOLIO PF502x PMICs are a series of software and pin-to-pin compatible multi-phase highly configurable devices. That, along with QM to ASIL B functional safety scalability, makes them suitable companions and fit for various system-level power requirements. This product family was designed to be used for autonomous, connectivity, automotive and industrial applications. | PMIC | Operating
Voltage (V) | Buck /
Boost | LDO | Ambient Temp
Range (°C) | ASIL | Special Features | Package | Associated NXP
Processor | Other
Processors | |--------|--------------------------|-----------------|-----|----------------------------|---------------|----------------------------|---------|-----------------------------|-------------------------------| | PF5020 | 2.7–5.5 | 3 | 1 | -40 to +125 | ASIL B/
QM | Watchdog, AMUX, multiphase | QFN48 | i.MX 8 | FPGA, Renesas
R-Car M3, H3 | | PF5023 | 2.7–5.5 | 3 | | -40 to +125 | ASIL B/
QM | Watchdog, AMUX, multiphase | QFN48 | i.MX 8 | FPGA, Renesas
R-Car M3, H3 | | PF5024 | 2.7–5.5 | 4 | | -40 to +125 | ASIL B/
QM | Watchdog, AMUX, multiphase | QFN48 | i.MX 8 | FPGA, Renesas
R-Car M3, H3 | # **PMIC COMMUNITY** The PMIC community is a dedicated community with experts available to answer your questions. https://community.nxp.com/community/Power-Management