
PN2222A

MMBT2222A

PZT2222A

NPN General Purpose Amplifier

- This device is for use as a medium power amplifier and switch requiring collector currents up to 500mA.
- · Sourced from process 19.

Absolute Maximum Ratings * T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units	
V _{CEO}	Collector-Emitter Voltage	40	V	
V _{CBO}	Collector-Base Voltage	75	V	
V_{EBO}	Emitter-Base Voltage	6.0	V	
I _C	Collector Current	1.0	Α	
T _{STG}	Operating and Storage Junction Temperature Range	- 55 ~ 150	°C	

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired

- These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
Off Characte	eristics				
BV _{(BR)CEO}	Collector-Emitter Breakdown Voltage *	e^* $I_C = 10 \text{mA}, I_B = 0$ 40			V
BV _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10\mu A, I_E = 0$	75		V
BV _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10\mu A, I_C = 0$	6.0		V
I _{CEX}	Collector Cutoff Current	$V_{CE} = 60V, V_{EB(off)} = 3.0V$		10	nA
I _{CBO}	Collector Cutoff Current	$V_{CB} = 60V, I_{E} = 0$ $V_{CB} = 60V, I_{E} = 0, T_{a} = 125^{\circ}C$		0.01 10	μA μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0V, I_{C} = 0$		10	μΑ
I _{BL}	Base Cutoff Current	$V_{CE} = 60V, V_{EB(off)} = 3.0V$		20	μΑ
On Characte	eristics				
h _{FE}	DC Current Gain	$\begin{split} &I_{C} = 0.1 \text{mA}, V_{CE} = 10 \text{V} \\ &I_{C} = 1.0 \text{mA}, V_{CE} = 10 \text{V} \\ &I_{C} = 10 \text{mA}, V_{CE} = 10 \text{V} \\ &I_{C} = 10 \text{mA}, V_{CE} = 10 \text{V}, T_{a} = -55 ^{\circ}\text{C} \\ &I_{C} = 150 \text{mA}, V_{CE} = 10 \text{V} ^{*} \\ &I_{C} = 150 \text{mA}, V_{CE} = 10 \text{V} ^{*} \\ &I_{C} = 500 \text{mA}, V_{CE} = 10 \text{V} ^{*} \end{split}$	35 50 75 35 100 50 40	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage *	I _C = 150mA, V _{CE} = 10V I _C = 500mA, V _{CE} = 10V		0.3 1.0	V
V _{BE(sat)}	Base-Emitter Saturation Voltage *	I _C = 150mA, V _{CE} = 10V I _C = 500mA, V _{CE} = 10V	0.6	1.2 2.0	V

Electrical Characteristics Ta=25°C unless otherwise noted (Continued)

Symbol	Parameter	Test Condition	Min.	Max.	Units
Small Signa	I Characteristics				
f _T	Current Gain Bandwidth Product	$I_C = 20 \text{mA}, V_{CE} = 20 \text{V}, f = 100 \text{MHz}$	300		MHz
C _{obo}	Output Capacitance	V _{CB} = 10V, I _E = 0, f = 1MHz		8.0	pF
C _{ibo}	Input Capacitance	$V_{EB} = 0.5V, I_{C} = 0, f = 1MHz$		25	pF
rb'C _c	Collector Base Time Constant	$I_C = 20$ mA, $V_{CB} = 20$ V, $f = 31.8$ MHz		150	pS
NF	Noise Figure	$I_C = 100\mu A, V_{CE} = 10V,$ $R_S = 1.0K\Omega, f = 1.0KHz$		4.0	dB
Re(h _{ie})	Real Part of Common-Emitter High Frequency Input Impedance	I _C = 20mA, V _{CE} = 20V, f = 300MHz		60	Ω
Switching C	Characteristics				
t _d	Delay Time	$V_{CC} = 30V, V_{EB(off)} = 0.5V,$		10	ns
t _r	Rise Time	I _C = 150mA, I _{B1} = 15mA		25	ns
t _s	Storage Time	$V_{CC} = 30V, I_{C} = 150mA,$		225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 15mA$		60	ns

Thermal Characteristics T_a=25°C unless otherwise noted

Cumbal	Parameter	Max.			Units	
Symbol		PN2222A	*MMBT2222A	**PZT2222A	Units	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	1,000 8.0	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3			°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	125	°C/W	

Spice Model

 $NPN \ (Is = 14.34f \ Xti = 3 \ Eg = 1.11 \ Vaf = 74.03 \ Bf = 255.9 \ Ne = 1.307 \ Ise = 14.34 \ Ikf = .2847 \ Xtb = 1.5 \ Br = 6.092 \ Isc = 0 \ Ikf = .2847 \ I$ lkr = 0 Rc = 1 Cjc = 7.306p Mjc = .3416 Vjc = .75 Fc = .5 Cje = 22.01p Mje = .377 Vje = .75 Tr = 46.91n Tf = 411.1p ltf = .6 Vtf = 1.7 Xtf = 3 Rb = 10

^{*} Device mounted on FR-4 PCB 1.6" × 1.6" × 0.06".

** Device mounted on FR-4 PCB 36mm × 18mm × 1.5mm; mounting pad for the collector lead min. 6cm².

Typical Characteristics

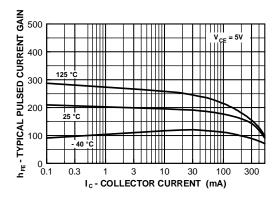


Figure 1. Typical Pulsed Current Gain vs Collector Current

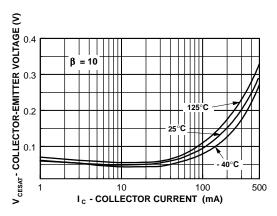


Figure 2. Collector-Emitter Saturation Voltage vs Collector Current

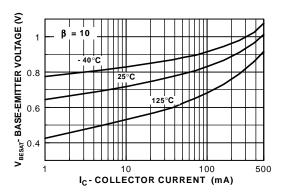


Figure 3. Base-Emitter Saturation Voltage vs Collector Current

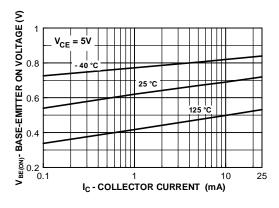


Figure 4. Base-Emitter On Voltage vs Collector Current

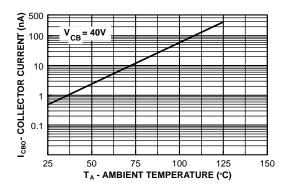


Figure 5. Collector Cutoff Current vs Ambient Temperature

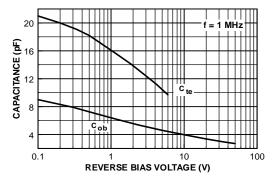


Figure 6. Emitter Transition and Output Capacitance vs Reverse Bias Voltage

©2004 Fairchild Semiconductor Corporation Rev. A1, August 2004

Typical Characteristics

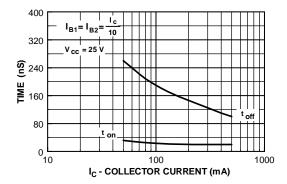


Figure 7. Turn On and Turn Off Times vs Collector Current

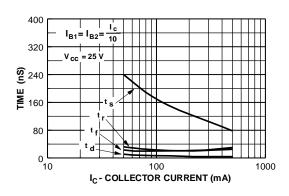


Figure 8. Switching Times vs Collector Current

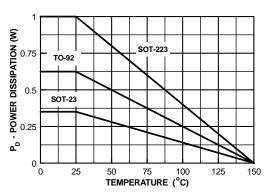


Figure 9. Power Dissipation vs Ambient Temperature

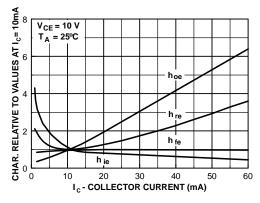


Figure 10. Common Emitter Characteristics

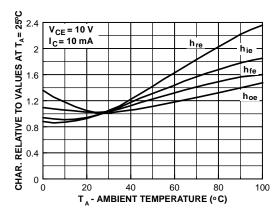


Figure 11. Common Emitter Characteristics

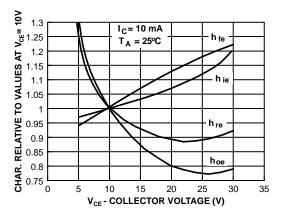
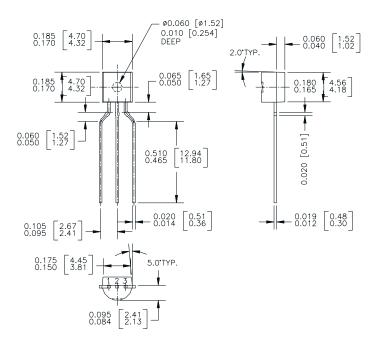
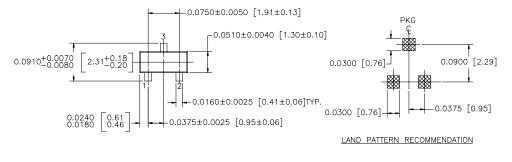
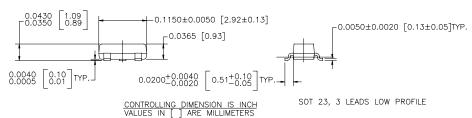



Figure 12. Common Emitter Characteristics

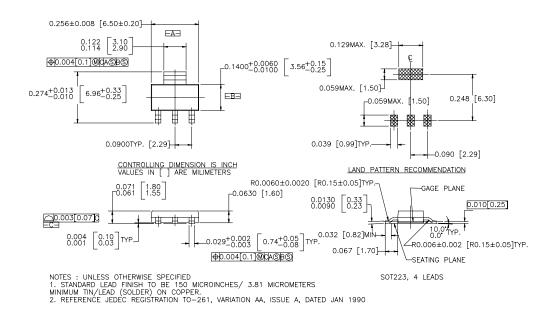
©2004 Fairchild Semiconductor Corporation Rev. A1, August 2004


Package Dimensions


TO-92

Package Dimensions (Continued)

SOT-23


NOTE: UNLESS OTHERWISE SPECIFIED

- 1. STANDARD LEAD FINISH 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
- 2. REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE G, DATED JUL 1993

Dimensions in Millimeters

Package Dimensions (Continued)

SOT-223

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST[®] $ACEx^{TM}$ ISOPLANAR™ Power247™ SuperFET™ $\mathsf{FASTr}^{\mathsf{TM}}$ ActiveArrav™ LittleFET™ PowerSaver™ SuperSOT™-3 FPS™ MICROCOUPLER™ $\mathsf{PowerTrench}^{\mathbb{R}}$ SuperSOT™-6 Bottomless™ QFET® $\mathsf{CoolFET}^{\mathsf{TM}}$ FRFET™ MicroFET™ SuperSOT™-8 QS™ SyncFET™ GlobalOptoisolator™ MicroPak™ $CROSSVOLT^{TM}$ MICROWIRE™ TinyLogic[®] GTO™ QT Optoelectronics™ $\mathsf{DOME}^\mathsf{TM}$ HiSeC™ TINYOPTO™ MSX^{TM} EcoSPARK™ Quiet Series™ I^2C^{TM} $MSXPro^{TM}$ RapidConfigure™ TruTranslation™ E²CMOS™ OCX^{TM} EnSigna™ i-Lo™ RapidConnect™ UHC™ $\mathsf{UltraFET}^{\circledR}$ ImpliedDisconnect™ FACT™ OCXPro™ uSerDes™ OPTOLOGIC® VCX^{TM} SILENT SWITCHER® FACT Quiet Series™ OPTOPLANAR™ SMART START™

Across the board. Around the world.™

The Power Franchise® Programmable Active Droop™

PACMAN™ SPM™ РОР™ Stealth™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.