DATA SHEET

PHOTOCOUPLER PS8703

HIGH-SPEED (200 kbps) ANALOG OUTPUT TYPE 5-PIN SOP PHOTOCOUPLER

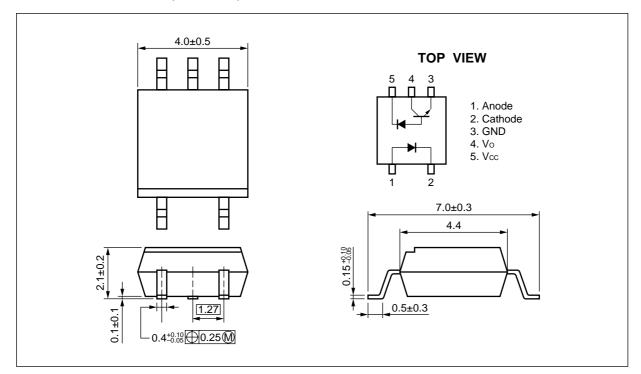
-NEPOC Series-

DESCRIPTION

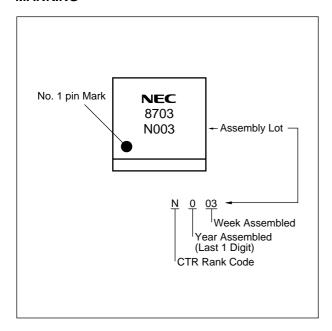
The PS8703 is an optically coupled isolator containing a GaAlAs LED on the light emitting diode (input side) and a PIN photodiode and a high-speed amplifier transistor on the output side on one chip.

This is a plastic SOP (Small Out-line Package) type for high density applications.

FEATURES


- Wide operating Vcc range (Vcc = -0.5 to +15 V)
- High isolation voltage (BV = 2 500 Vr.m.s.)
- High-speed response (tphL, tpLH = 5 μ s MAX. (@RL = 4.1 k Ω))
- · Ordering number of taping product: PS8703-F3, F4

APPLICATIONS


- · Computer and peripheral manufactures
- · General purpose inverter
- · Substitutions for relays and pulse transformers
- Power supply

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

PACKAGE DIMENSIONS (UNIT: mm)

MARKING

ORDERING INFORMATION

Part Number	Package	Packing Style	Application Part Number ¹
PS8703	5-pin SOP	Magazine case 100 pcs	PS8703
PS8703-F3		Embossed Tape 3 500 pcs/reel	
PS8703-F4			

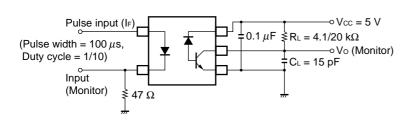
^{*1} For the application of the Safety Standard, following part number should be used.

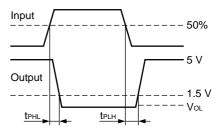
ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

	Parameter	Symbol	Ratings	Unit
Diode	Forward Current	I F	50	mA
	Reverse Voltage	VR	5	V
Detector	Supply Voltage	Vcc	−0.5 to +15	V
	Output Voltage	Vo	–0.5 to +15	V
	Output Current	lo	8	mA
	Power Dissipation [™]	Pc	80	mW
Isolation	Voltage ²	BV	2 500	Vr.m.s.
Operating Ambient Temperature		TA	-40 to +100	°C
Storage Temperature		T _{stg}	-55 to +125	°C

^{*1} Applies to output pin Vo. Reduced to 0.8 mW/ $^{\circ}$ C at T_A = 25 $^{\circ}$ C or more.

^{*2} AC voltage for 1 minute at $T_A = 25^{\circ}C$, RH = 60% between input and output.


ELECTRICAL CHARACTERISTICS (TA = 25°C)

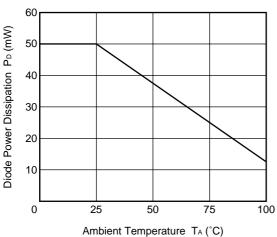

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	IF = 16 mA		1.2	1.5	V
	Reverse Current	lR	V _R = 3 V			10	μΑ
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		30		pF
Detector	High Level Output Current	Іон (1)	IF = 0 mA, Vcc = Vo = 5.5 V		7	500	nA
	High Level Output Current	Іон (2)	IF = 0 mA, Vcc = Vo = 15 V			100	μΑ
	Low Level Output Voltage	Vol	IF = 16 mA, Vcc = 4.5 V, loL = 1.1 mA		0.1	0.4	V
	High Level Supply Current	Іссн	IF = 0 mA, Vo = open, Vcc = 15 V		0.01	1	μΑ
	Low Level Supply Current	Iccl	IF = 16 mA, Vo = open, Vcc = 15 V		150	800	
Coupled	Current Transfer Ratio (Ic/IF)*1	CTR	IF = 16 mA, Vcc = 4.5 V, Vo = 0.4 V	10	23	30	%
	Isolation Resistance	R _{I-O}	V _{I-O} = 1 kV _{DC} , RH = 40 to 60%	1011			Ω
	Isolation Capacitance	CI-O	V = 0 V, f = 1 MHz		0.4		pF
	Propagation Delay Time $(H \rightarrow L)^{2}$	t PHL	$I_F = 16 \text{ mA}, \text{ Vcc} = 5 \text{ V}, \text{ RL} = 4.1 \text{ k}\Omega,$ $\text{CL} = 15 \text{ pF}$		1	5	μs
	Propagation Delay Time (L → H) '2	tрцн			2	5	
	Propagation Delay Time (H → L) '2	t PHL	IF = 16 mA, Vcc = 5 V, RL = 20 k Ω , CL = 15 pF		1	15	
	Propagation Delay Time (L → H) '2	tрцн			7	15	

★ *1 CTR rank

L: 15 to 30 (%) N: 10 to 30 (%)

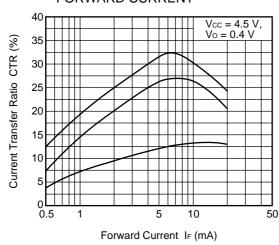
*2 Test circuit for propagation delay time

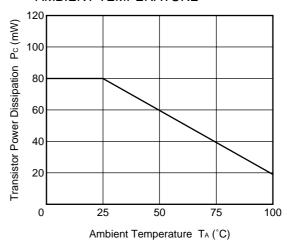
C∟ includes probe and stray wiring capacitance.

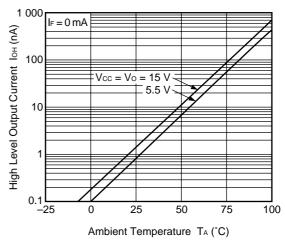

USAGE CAUTIONS

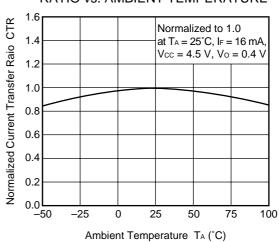
- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1 μF is used between Vcc and GND near device.

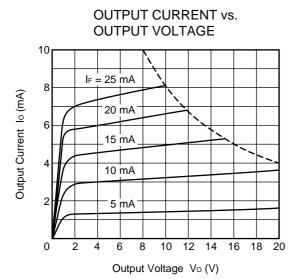
★ TYPICAL CHARACTERISTICS (TA = 25°C, unless otherwise specified)

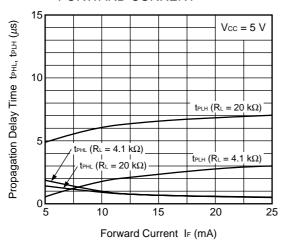

DIODE POWER DISSIPATION vs. AMBIENT TEMPERATURE

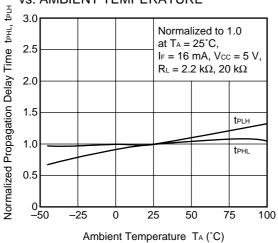

FORWARD CURRENT vs. FORWARD VOLTAGE

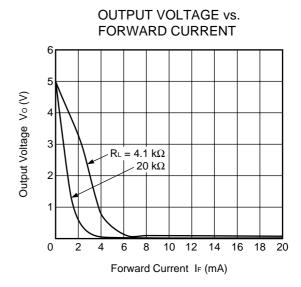

CURRENT TRANSFER RATIO vs. FORWARD CURRENT

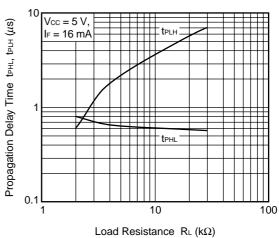

TRANSISTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE


HIGH LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE

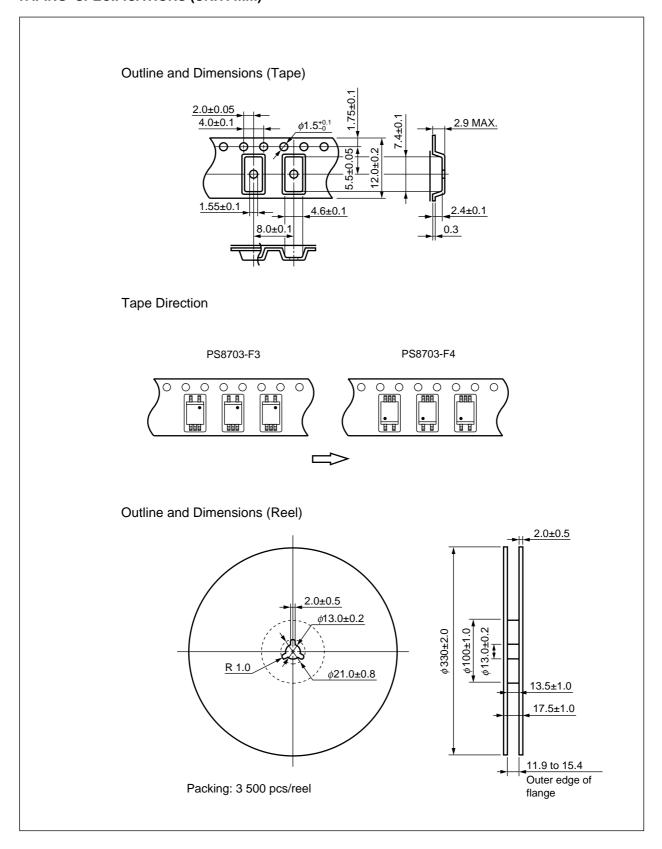

NORMALIZED CURRENT TRANSFER RATIO vs. AMBIENT TEMPERATURE




PROPAGATION DELAY TIME vs. FORWARD CURRENT


NORMALIZED PROPAGATION DELAY TIME vs. AMBIENT TEMPERATURE

Remark The graphs indicate nominal characteristics.



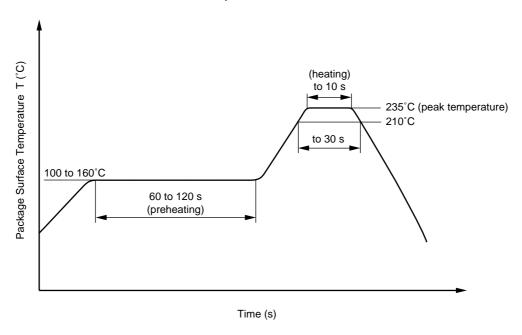
PROPAGATION DELAY TIME vs. LOAD RESISTANCE

★ TAPING SPECIFICATIONS (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

(1) Infrared reflow soldering

• Peak reflow temperature 235°C or below (package surface temperature)


• Time of temperature higher than 210°C 30 seconds or less

• Number of reflows Three

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt % is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

- The information in this document is current as of July, 2002. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

SAFETY INFORMATION ON THIS PRODUCT

Cai	Itio	
		วท

GaAs Products

The product contains gallium arsenide, GaAs.

GaAs vapor and powder are hazardous to human health if inhaled or ingested.

- Do not destroy or burn the product.
- Do not cut or cleave off any part of the product.
- Do not crush or chemically dissolve the product.
- Do not put the product in the mouth.

Follow related laws and ordinances for disposal. The product should be excluded from general industrial waste or household garbage.

▶Business issue

NEC Compound Semiconductor Devices, Ltd.

5th Sales Group, Sales Division TEL: +81-3-3798-6372 FAX: +81-3-3798-6783 E-mail: salesinfo@csd-nec.com

NEC Compound Semiconductor Devices Hong Kong Limited

 Hong Kong Head Office
 TEL: +852-3107-7303
 FAX: +852-3107-7309

 Taipei Branch Office
 TEL: +886-2-8712-0478
 FAX: +886-2-2545-3859

 Korea Branch Office
 TEL: +82-2-528-0301
 FAX: +82-2-528-0302

NEC Electron Devices European Operations http://www.nec.de/

TEL: +49-211-6503-101 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279

▶Technical issue

NEC Compound Semiconductor Devices, Ltd. http://www.csd-nec.com/

Sales Engineering Group, Sales Division

E-mail: techinfo@csd-nec.com FAX: +81-44-435-1918