

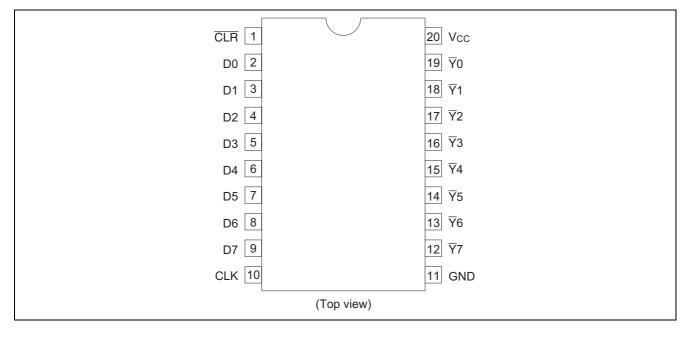
RD15LD74AP, RD15LD74ANP, RD15LD74AT

8-bit D-type Flip-Flop Driver (with Clear)

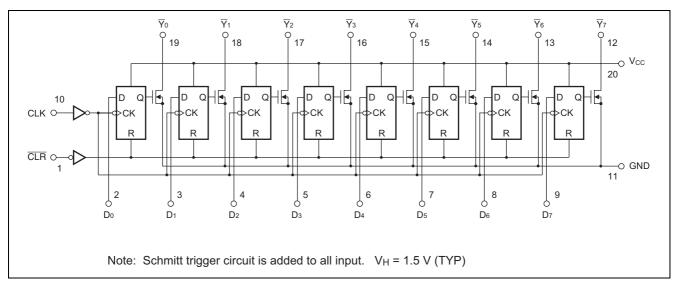
REJ03D0894-0300 Rev.3.00 Feb 29, 2008

Description

RD15LD74AP, RD15LD74ANP, RD15LD74AT have eight D-type flip-flop drivers and high voltage NMOS output (open drain output) in a 20 pin package. Each bit, there are a common clear and clock input. The input signal is output with the rising edge of clock signals. The voltage of maximum 15 V can be impressed to the drain-source voltage.


Features

- Application of amusement equipment.
- Output voltage : V_{DS} (max) = 15 V
- Output current : I_{DS} (max) = 200 mA (par pin)
- Supply voltage range : 3.0 to 5.5 V
- Operating temperature range : -20 to +85 °C
- Quiescent supply current : 5 µA max.
- Low input current : $1 \mu A max$.
- Ordering Information

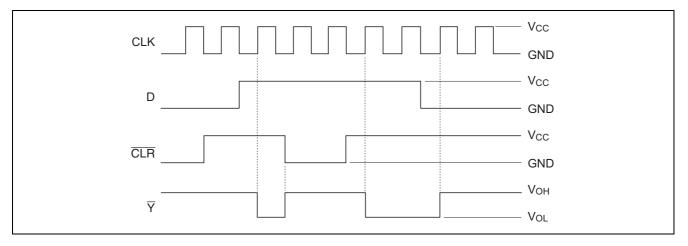

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Packing Abbreviation (Quantity)	Surface Treatment
RD15LD74APT0	SDIP-20 pin	PRDP0020BA-A (20P4B)	Р	T (1,125 pcs/box)	0 (Sn-Cu)
RD15LD74ANPT0	DILP-20 pin	PRDP0020AC-B (DP-20NEV)	Р	T (1,000 pcs/box)	0 (Ni/Pd/Au)
RD15LD74ATH0	TSSOP-20 pin	PTSP0020JB-A (TTP-20DAV)	Т	H (2,000 pcs/reel)	0 (Ni/Pd/Au)

Note: Please consult the sales office for the above package availability.

Pin Arrangement

Logic Diagram

Function Table


	Output		
CLR	CLK	D	Ϋ́
L	Х	Х	Z
Н	\uparrow	L	Z
Н	\uparrow	н	L
Н	L	Х	Y ₀
Н	\rightarrow	Х	Y ₀

H : High level

- L : Low level
- X : Immaterial
- Z : High Impedance
- \uparrow : Low to High transition
- \downarrow : High to Low transition

 Y_0 : Level of \overline{Y} before the indicated steady input conditions were established.

Timing Figure

Absolute Maximum Ratings

Item Symbol		Ratings	Unit	Conditions		
Supply voltage	V _{CC}	6.5	V			
Input voltage	VI	–0.5 to V_{CC}	V			
Output voltage	V _{DS}	–0.5 to 15	V	Output : "Z" (off)		
Output current	I _{DS}	200	mA	Output : "on	", Current of one circuit	
		1.47		SDIP	Ta = 25°C	
Maximum power dissipation ^{*1}	PT	1.38	W	DILP		
uissipation		0.76		TSSOP	Base implementation	
Storage temperature	Tstg	-55 to +125	°C			

Note: The absolute maximum ratings are values which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

1. The maximum package power dissipation was calculated using a junction temperature of 150°C

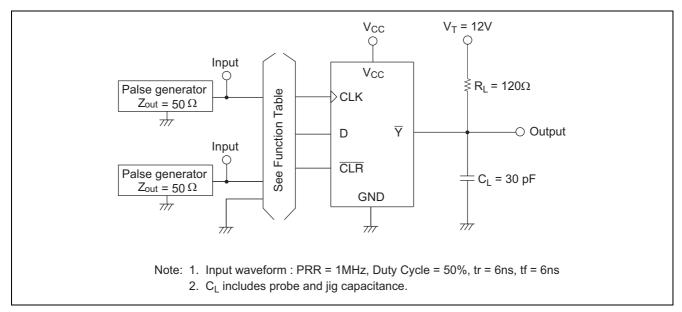
Recommended Operating Conditions

ltem	Symbol	Ratings		Unit	Conditions		
Supply voltage	V _{CC}	3.0	5.5	V			
Input voltage	VI	0	V _{CC}	V			
Output voltage	V_{DS}	0	15	V	Output "Z"	Output "Z" (off)	
Output current (Current of an one circuit, when eight circuit operation)	I _{DS}	0	200	mA	SDIP	Duty cycle $\leq 60\%$	
		0	150		JUIF	Duty cycle ≤ 100%	
		0	200	mA mA	DILP	Duty cycle $\leq 55\%$	
		0	140		DILF	Duty cycle ≤ 100%	
		0	200		TSSOP	Duty cycle ≤ 25%	
		0	105		1330F	Duty cycle ≤ 100%	
Input rise / fall time	t _r , t _f	0	500	ns	$V_{\rm CC} = 3.0$	V _{CC} = 3.0 V, 4.5 V	
Operating temperature	Та	-20	85	۵°			

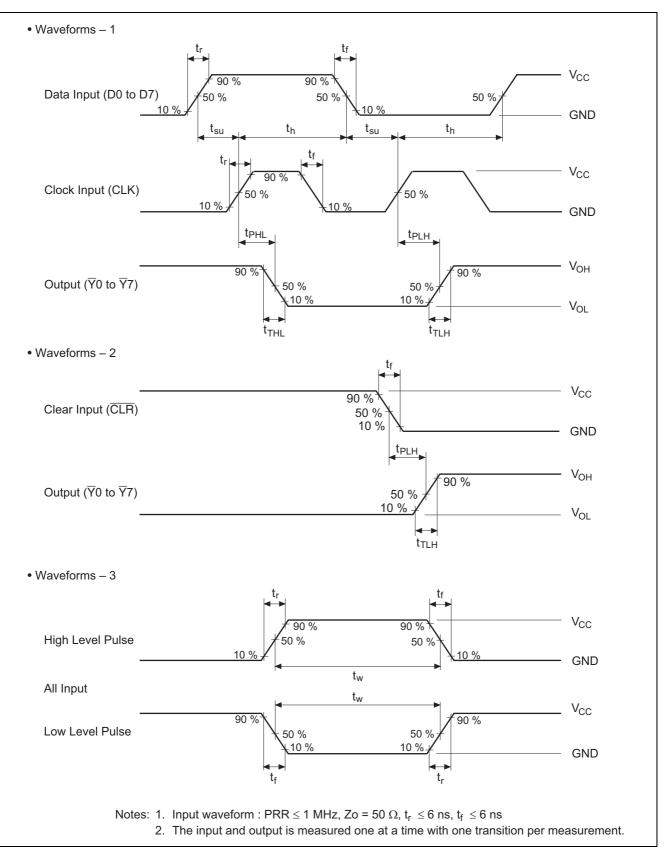
Note: Unused or floating inputs must be held high or low.

Electrical Characteristics

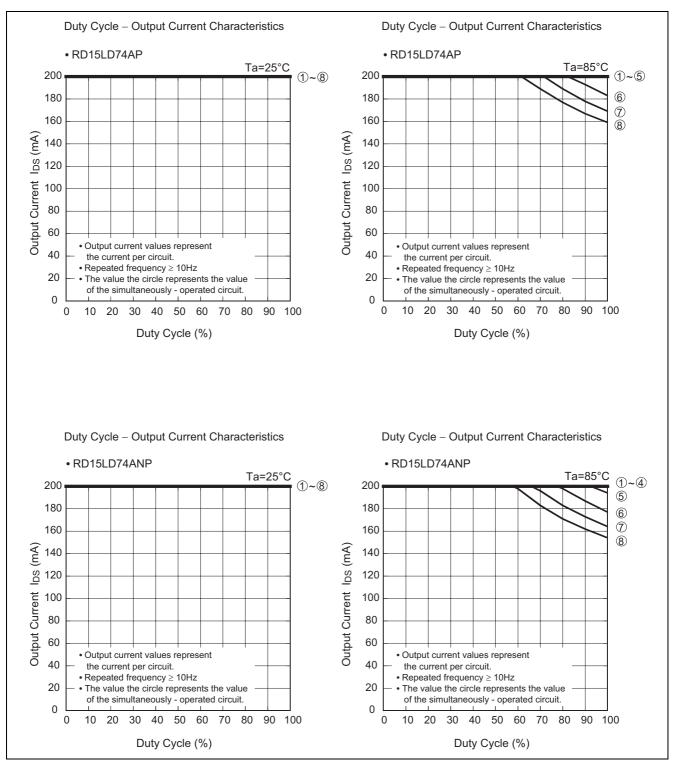
 $(Ta = -20 \text{ to } +85^{\circ}C)$

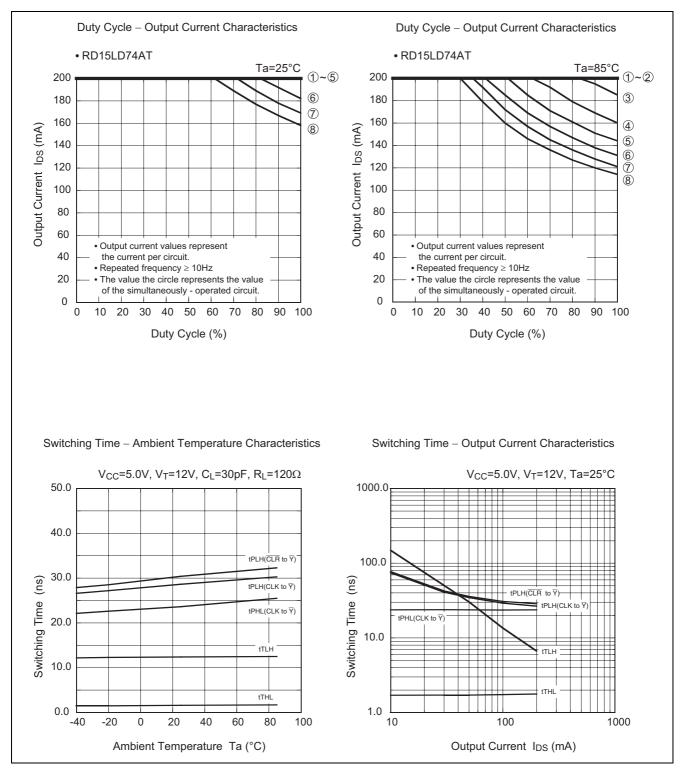

ltom	Symbol	VCC (V)	Ratings			Unit	Conditions			
ltem			Min	Тур	Max	Unit	Conditions			
	Vih	3.0 to 3.6	V _{CC} ×0.84	_	—	V				
		4.5 to 5.5	V _{CC} ×0.76		_					
Input voltage	Ma	3.0 to 3.6	—		V _{CC} ×0.16	V				
	VIL	4.5 to 5.5	—	_	V _{CC} ×0.24	V				
Output voltage	V _{DS}	3.0 to 3.6	—	0.30	0.45		I _{DS} = 100 mA			
		4.5 to 5.5	—	0.25	0.38	V				
		3.0 to 3.6	—	0.60	0.90		I _{DS} = 200 mA			
		4.5 to 5.5	—	0.51	0.77					
"H" input current	I _{IH}	3.0 to 5.5	—	0.005	1.0	μΑ	$V_I = V_{CC}$			
"L" input current	IIL	3.0 to 5.5	—	0.005	-1.0	μΑ	$V_1 = 0 V$			
Quiescent supply current	Icc	5.5	_	0.005	5.0	μA	All output "Z" (off)			
							$V_I = V_{CC}$ or GND			
		5.5	—	0.005	5.0		All output "on", $V_I = V_{CC}$ or GND			
Output off state	I _{DS}	5.0	5.0	5.0	5.0	_	0.002	5.0	μA	V _{DS} = 12 V
leak current	טי			0.002	0.0	μΛ	VD2 - 12 V			
Output on resister	R _{DS}	4.5	—	2.5	3.8	Ω	I _{DS} = 100 mA			

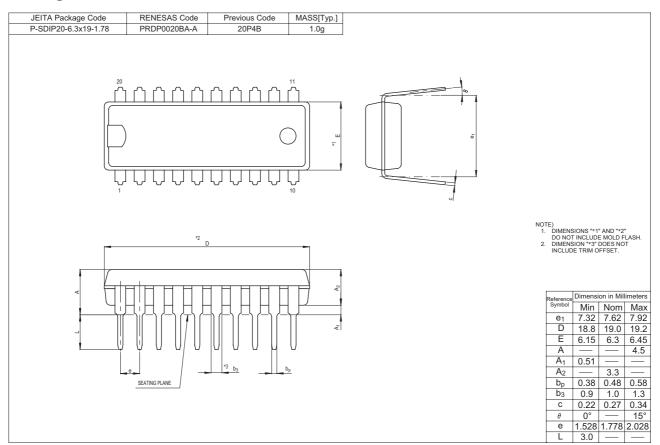
Switching Characteristics

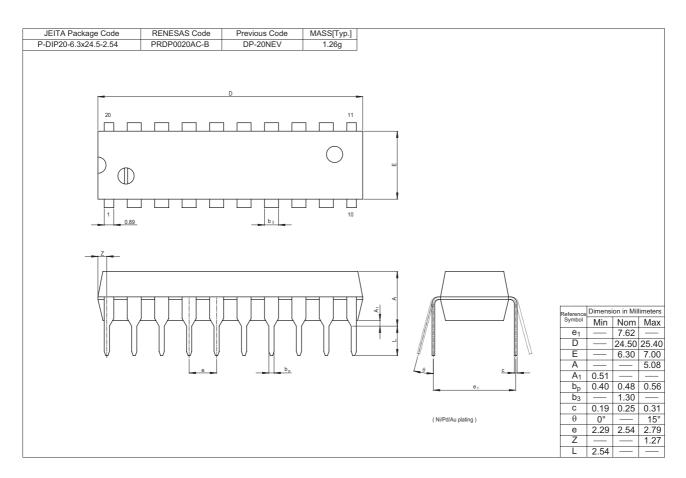

ltem	Symbol	VCC (V)	Ratings		Unit	Conditions	
nem		VCC (V)	Min	Max	Unit	Conditions	
Maximum clock	f _{max}	3.3 ± 0.3	—	15	MHz		
frequency		5.0 ± 0.5	—	20	IVITIZ		
Propagation delay	t	3.3 ± 0.3	1.0	65	ns	CLK, $\overline{\text{CLR}}$ to $\overline{\text{Y}}$	
time	t _{PLH}	5.0 ± 0.5	1.0	50	115		
Propagation delay	+	3.3 ± 0.3	1.0	60	20		
time	t _{PHL}	5.0 ± 0.5	1.0	45	ns	CLK to \overline{Y}	
Setup time	t _{su}	3.3 ± 0.3	25	—	ns	D to CLK	
		5.0 ± 0.5	20	—	115		
Hold time	t _h	3.3 ± 0.3	3	—	- ns	CLK to D	
		5.0 ± 0.5	3	—	115		
Pulse width	t _W	3.3 ± 0.3	50	—	ns	CLK, CLR	
Puise width		5.0 ± 0.5	40	—	115		
Output rise time	t _{TLH}	3.3 ± 0.3	—	30	ns	Ϋ́	
		5.0 ± 0.5	—	20	115	I	
Output fall time	t _{THL}	3.3 ± 0.3	—	10	nc	Ϋ́	
		5.0 ± 0.5	—	5	ns	1	

 $(Ta = -20 \text{ to } +85^{\circ}\text{C}, \text{ CL} = 30 \text{ pF}, \text{ tr} = \text{tf} = 6 \text{ ns})$

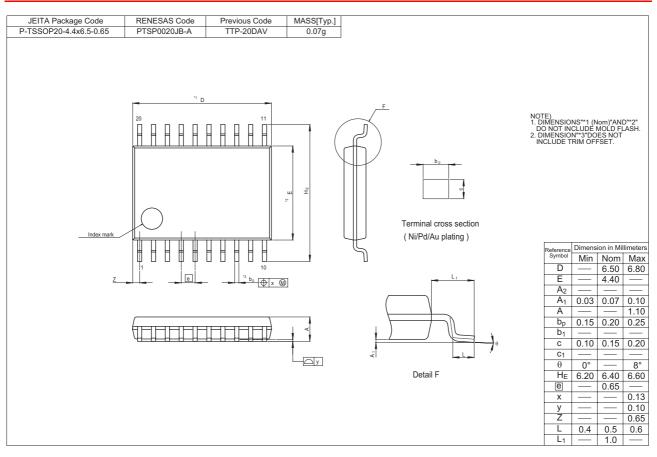

Test Circuit


Waveforms


Application Data



Application Data


Package Dimensions

RENESAS

RD15LD74AP, RD15LD74ANP, RD15LD74AT

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set exception of protein ting from the date this document. Dut Renesas asproaces for description and the date dispersively and the information in this document. Dut Renesas assumes no liability whatsoever for any damages incurred as a set evention of the set of t

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com