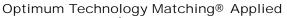
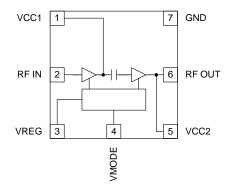


Preliminary

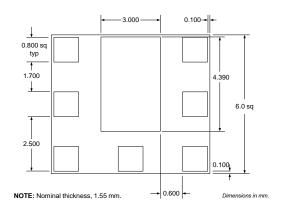
RF3118


3V 1900MHZ LINEAR AMPLIFIER MODULE

Typical Applications


- 3V CDMA US-PCS Handsets
- 3V CDMA2000/1X PCS Handsets
- Compatible with Qualcomm Chipset
- Spread-Spectrum Systems

Product Description


The RF3118 is a high-power, high-efficiency linear amplifier IC targeting 3V handheld systems. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final RF amplifier in dual-mode 3V CDMA hand-held digital cellular equipment, spread-spectrum systems, and other applications in the 1850MHz to 1910MHz band. The RF3118 has a digital control line for low power application to reduce the current drain. The device is self-contained with 50Ω input and output that is matched to obtain optimum power, efficiency, and linearity characteristics. The module is an ultra-small 6mmx6mm land grid array with backside ground.

🗌 Si BJT	🗹 GaAs HBT	GaAs MESFET
Si Bi-CMOS	SiGe HBT	Si CMOS

Functional Block Diagram

Package Style: LGM (6mmx6mm)

Features

- Input/Output Internally Matched @ 50Ω
- Single 3V Supply
- 29dBm Linear Output Power
- 27dB Linear Gain
- 34% Linear Efficiency
- 50mA Idle Current

Ordering Information RF3118 3V 1900MHz Linear Amplifier Module RF3118 PCBA Fully Assembled Evaluation Board

 RF Micro Devices, Inc.
 Tel (336) 664 1233

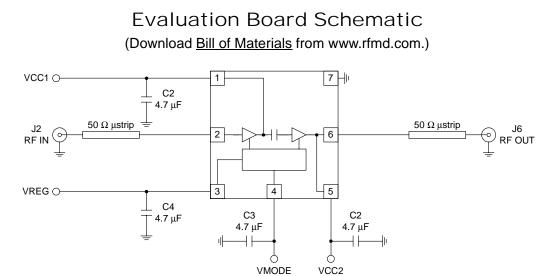
 7628 Thorndike Road
 Fax (336) 664 0454

 Greensboro, NC 27409, USA
 http://www.rfmd.com

Absolute Maximum Ratings

Rating	Unit
+8.0	V _{DC}
+5.2	V _{DC}
+4.2	V _{DC}
+3.5	V _{DC}
+10	dBm
-30 to +110	°C
-30 to +150	°C
	+8.0 +5.2 +4.2 +3.5 +10 -30 to +110

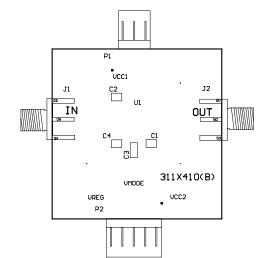
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

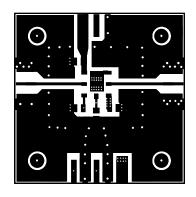

Deremeter	Specification		Unit	Condition		
Parameter	Min.	Тур.	Max.		Condition	
					Typical Performance at V _{CC} =3.2V,	
High Power State					V_{REG} =3.0V T_{AMB} =25°C,	
(V _{MODE} Low)					Frequency=1850MHz to 1910MHz (unless otherwise specified)	
Frequency Range	1850		1910	MHz		
Linear Gain	25	27		dB		
Second Harmonic		-40		dBc		
Third Harmonic		-50		dBc		
Maximum Linear Output Power (CDMA Modulation)	28	29		dBm		
Total Linear Efficiency		34		%	P _{OUT} =28dBm	
Adjacent Channel Power Rejection		-48	-46	dBc	ACPR @ 1.25MHz, P _{OUT} =28dBm	
,		-60	-57	dBc	ACPR @ 2.25MHz, P _{OUT} =28dBm	
Input VSWR		2:1			001	
Output VSWR			10:1		No damage.	
			6:1		No oscillations. >-70dBc	
Noise Power		-141		dBm/Hz	At 80MHz offset.	
					Typical Performance at V _{CC} =3.2V,	
Low Power State					V _{REG} =3.0V T _{AMB} =25 ^o C,	
(V _{MODE} High)					Frequency=1850MHz to 1910MHz (unless otherwise specified)	
Frequency Range	1850		1910	MHz	, ,	
Linear Gain	15	19		dB		
Second Harmonic		-40		dBc		
Third Harmonic		-50		dBc		
Maximum Linear Output Power (CDMA Modulation)	16	20		dBm		
Adjacent Channel Power Rejection		-55	-46	dBc	ACPR @ 1.25MHz, P _{OUT} =16dBm	
-		-72	-60	dBc	ACPR @ 1.25MHz, P _{OUT} =16dBm	
Input VSWR		2:1				
Output VSWR			10:1		No damage.	
•			6:1		No oscillations. >-70dBc	

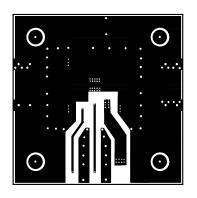
Preliminary

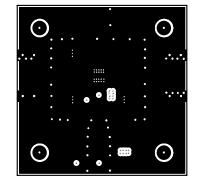
Deremeter	Specification		110:4	Condition	
Parameter	Min. Typ. Max.		Unit	Condition	
DC Supply					T _{AMB} =25 ^o C
Supply Voltage	3.2	3.7	4.2	V	
Quiescent Current		160	200	mA	V_{MODE} =Low V_{REG} =3.0V, V_{CC} =3.2V
		50	60	mA	V _{MODE} =High, V _{REG} =3.0V, V _{CC} =3.2V
V _{REG} Current			8	mA	
V _{MODE} Current			1	mA	
Turn On/Off Time (RF)			6	μs	
Total Current (Power Down)			10	μA	V _{REG} =Low, V _{MODE} =Low
			5	μA	
V _{REG} "Low" Voltage	0		0.5	V	
V _{REG} "High" Voltage	2.9	3.0	3.1	V	
V _{MODE} "Low" Voltage	0		0.5	V	
V _{MODE} "High" Voltage	2.0		3.0	V	

RF3118


Pin	Function	Description	Interface Schematic
1	VCC1	First stage collector supply. A low frequency decoupling capacitor (e.g., $1\mu F$) is required.	
2	RF IN	RF input internally matched to 50 $\ensuremath{\Omega}\xspace$. This input is internally AC-coupled.	
3	VREG	Regulated voltage supply for amplifier bias. In Power Down mode, both $\rm V_{REG}$ and $\rm V_{MODE}$ need to be LOW (<0.5V).	
4	VMODE	For nominal operation (High Power Mode), V _{MODE} is set LOW. When set HIGH, devices are turned off to improve efficiency.	
5	VCC2	Output stage collector supply. A low frequency decoupling capacitor (e.g., $1\mu F)$ is required.	
6	RF OUT	RF output internally matched to 50Ω . This output is internally AC-coupled.	
7	GND	Ground connection. Connect to package base ground. For best perfor- mance, keep traces physically short and connect immediately to ground plane.	
Pkg Base	GND	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with mul- tiple vias. The pad should have a short thermal path to the ground plane.	




5 POWER AMPLIFIERS


RF3118

Evaluation Board Layout Board Size 1.5" x 1.5" Board Thickness 0.032", Board Material FR-4, Multi-Layer, Ground Plane at 0.014"

