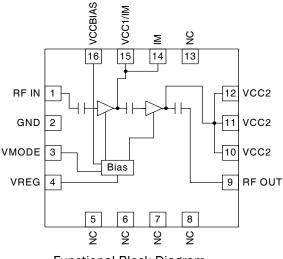


rfmd.com

RF5188 3V 1950 MHZ W-CDMA LINEAR POWER AMPLIFIER MODULE

RoHS Compliant & Pb-Free Product Package Style: QFN, 16-Pin, 3 x 3



Features

- Input/Output Internally Matched@50Ω
- 27.5dBm Linear Output Power
- 42% Peak Linear Efficiency
- 28dB Linear Gain
- -42dBc ACLR @ ±5MHz
- HSDPA Capable

Applications

- 3V W-CDMA Band 1 Handsets
- Multi-Mode W-CDMA 3G Handsets
- 3V TD-SCDMA Handsets
- Spread-Spectrum Systems

Functional Block Diagram

Product Description

The RF5188 is a high-power, high-efficiency linear amplifier module specifically designed for 3V handheld systems. The device is manufactured on an advanced third generation GaAs HBT process, and was designed for use as the final RF amplifier in 3V W-CDMA handheld digital cellular equipment, spread-spectrum systems, and other applications in the 1920MHz to 1980MHz band (Band 1). The RF5188 has a digital control line for low power applications to lower quiescent current. The RF5188 is assembled in at 16-pin, 3mmx3mm, QFN package.

Ordering Information

RF5188 RF5188PCBA-41X

3V 1950MHz W-CDMA Linear Power Amplifier Module Fully Assembled Evaluation Board

Optimum Technology Matching® Applied

🗹 GaAs HBT	□ SiGe BiCMOS	GaAs pHEMT	🗌 GaN HEMT
GaAs MESFET	Si BiCMOS	Si CMOS	
InGaP HBT	SiGe HBT	🗌 Si BJT	

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^M, PowerStar®, POLARIS^M TOTAL RADIO^M and UltimateBlue^M are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. @2006. RF Micro Devices. Inc.

RF5188

Absolute Maximum Ratings

-		
Parameter	Rating	Unit
Supply Voltage (RF off)	+8.0	V
Supply Voltage ($P_{OUT} \leq 31 dBm$)	+5.2	V
Control Voltage (V _{REG})	+3.9	V
Input RF Power	+10	dBm
Mode Voltage (V _{MODE})	+3.9	V
Operating Temperature	-30 to +110	°C
Storage Temperature	-40 to +150	°C
Moisture Sensitivity Level (IPC/JEDEC J-STD-20)	MSL 2 @ 260	°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

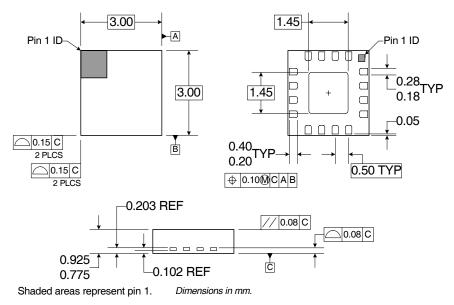
RoHS status based on EUDirective2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Devenedar	Specification		11.4.14	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
High Gain Mode (V _{MODE} Low)					$\begin{array}{l} T=25^{\circ}C \text{ Ambient, } V_{CCBIAS}=3.4V, \\ V_{CC}=3.4V, V_{REG}=2.8V, V_{MODE}=0V, \text{ and} \\ P_{OUT}=27.5dBm \text{ for all parameters (unless otherwise specified). Modulation is 3GPP 3.2 03-00 DPCCH+1DPDCH.} \end{array}$	
Operating Frequency Range	1920		1980	MHz		
Linear Gain	26	28.5	32	dB		
Harmonics			-10	dBm	f=2fo, 3fo	
Maximum Linear Output	27.5			dBm		
Linear Efficiency	38	42	47	%		
Maximum I _{CC}	352	394	435	mA		
ACLR1@±5MHz		-42	-37	dBc		
ACLR2 @ ±10MHz		-53	-48	dBc		
Input VSWR		1.7:1				
Output VSWR Stability Ruggedness			6:1		No oscillation>-70dBc	
			10:1		No damage	
Noise Power		-150		dBm/Hz	-50≤P _{OUT} ≤+27.5dBm, RX=925MHz to 960MHz (EGSM)	
		-133		dBm/Hz	-50≤P _{OUT} ≤+27.5dBm, RX=1805MHz to 1880MHz (DCS)	
		-140		dBm/Hz	-50≤P _{OUT} ≤+27.5dBm, RX=2110MHz to 2170MHz (W-CDMA), TX / RX Offset=130MHz	
		-143		dBm/Hz	-50≤P _{OUT} ≤+27.5dBm, RX=2110MHz to 2170MHz (W-CDMA), TX / RX Offset=190MHz	
		-147		dBm/Hz	-50≤P _{0UT} ≤+27.5dBm, RX=2400MHz to 2480MHz (Bluetooth)	
		-107		dBm/Hz	-50≤P _{OUT} ≤+27.5dBm, TX=1932.3MHz to 1980MHz, RX=1893.5MHz to 1919.6MHz (PHS)	
IM Products						
IM 5MHz			-31	dBc	IF offset f ₀ +5MHz with CW signal=-40dBc	
IM 10MHz			-41	dBc	IF offset f_0 +10MHz with CW signal=-40dBc	

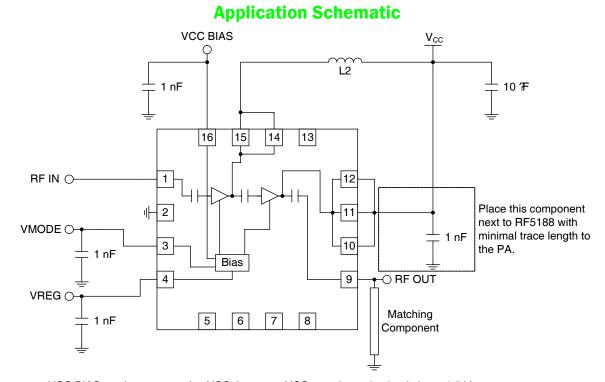
rfmd.com

RFMD 💷

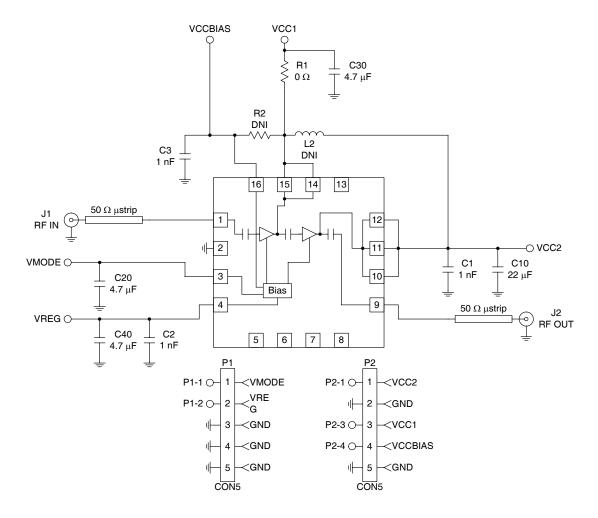

Min. Typ. Max. Max. Low Gain Mode (V _{MODE} High) V_{CP} <	Devenueter	Specification			11	Oened!#iene	
Low Gain Mode (V _{MODE} High) wasse wasse wasse wasse wasse wasse wasse wasse wasse Poor = 1.68 m for Moor Poor = 1.6	Parameter	Min.	Тур.	Max.	Unit	Condition	
Linear Gain 22 26 31 dB Maximum Linear Output 16 dBm dBm Linear Efficiency 18.3 21.0 25.3 % ACIR $@$ ±5MHz 41 -37 dBc ACIR $@$ ±5MHz -54 48 dBc ACIR $@$ ±5MHz 105 125 145 mA Input VSWR 105 125 145 mA Input VSWR Stability Ruggedness 6:1 No oscillation >-65dBc IM Products - 10:1 No damage IM SDMHz - -31 dBc IF offset $f_0 + 5MHz$ with CW signal=-40dBc Power Supply - -31 dBc IF offset $f_0 + 5MHz$ with CW signal=-40dBc Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Low power with DC to DC converter V _{CC} Bias 1.5 - 4.2 V Low power with DC to DC converter V _{CC Dias} 1.5 - 4.2 V Low power with DC to DC converter	Low Gain Mode (V _{MODE} High)					V_{CC} =1.5V, V_{REG} =2.8V, V_{MODE} =2.8V, and P_{OUT} =16dBm for all parameters (unless otherwise specified). Modulation is 3GPP 3.2 03-00	
Maximum linear Output 16 16 dBm Linear Efficiency 18.3 21.0 25.3 % ACLR \oplus 100MHz -41 -37 dBc ACLR \oplus 100MHz -54 48 dBc Maximum loc 105 125 145 mA Input VSWR - 105 125 145 mA Input VSWR 2:1 -	Operating Frequency Range	1920		1980	MHz		
Linear Efficiency 18.3 21.0 25.3 % ACLR $@$ ±50Mz ACLR $@$ ±50Mz -41 -37 dBc ACLR $@$ ±10MHz -54 48 dBc Maximum l_{CC} 105 125 145 mA Input SWR 105 125 145 mA Output VSWR Stability Ruggedness 105 125 145 No oscillation>-65dBc Mutput SWR - 10:1 No damage No damage IM Products - 10:1 No damage Image IM 10MHz - - 10:1 No damage Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V V Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Low power with DC to DC Converter V _{CC} Bias 1.5 - - V Low power with DC to DC Converter V _{GC Bias} Infle Current (I _{CC1} /I _{CC2} /I _{CCBMS}) - 60 83 mA V _{MODE} =Iow and V _{REG} =2.8V, V _{CC} =3.8V, V _{CC} =1.5V	Linear Gain	22	26	31	dB		
ACLR @ $\pm 5MHz$ Image Image Image Image ACLR @ $\pm 10MHz$ 105 125 145 mA Image Input VSWR 105 125 145 mA Image Input VSWR 105 125 145 mA Image Output VSWR Stability Ruggedness 105 2:1 Image Image Image IM Products Image 10:1 No oscillation>-85dBc No damage IM Products Image Image Image Image Image IM 10MHz Image Image Image Image Image Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Image Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Image Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Image Supply Collage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Image Voc Bias 1.5	Maximum Linear Output	16			dBm		
ACLR @ ±10MHz Image	Linear Efficiency	18.3	21.0	25.3	%		
Maximum I_{CC} 105 125 145 mA Input VSWR Input VSWR Stability Ruggedness 1 2:1 Input VSWR Stability Ruggedness No oscillation>-65 dBc Output VSWR Stability Ruggedness 1 10:1 No damage IM Products 1 1 No damage IM Products 1 1 No damage IM 10MHz 1 0 No damage Power Supply 1 3 dBc IF offset $f_0 + 10$ MLz with CW signal = .40 dBc Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Supply Constance 1.5 4.2 V Low power with DC to DC Converter V _{CC} Bias 1.5 4.2 V Low gain Idle Current (Ig_C1/I _{CC2} /I _{CCBIAS}) 70 93 mAA V _{MODE} =low and V _{REG} =2.8V, V _{CC} =3.4V V _{MOEC} Curent 1 3	ACLR @ ±5 MHz		-41	-37	dBc		
Input VSWRImageImageImageImageOutput VSWR Stability RuggednessImage $6:1$ No oscillation>-65dBcOutput VSWR Stability RuggednessImageNo damageIM ProductsImageImageNo damageIM ProductsImageImageImageIM 10MHzImageImageImageIM 10MHzImageImageImageSupply Voltage (V _{CC1} and V _{CC2})3.23.44.2VSupply Voltage (V _{CC1} and V _{CC2})3.23.44.2VU _{CC} Bias1.54.2VImageU _{CC} Bias1.54.2VImageU _{CC} Vicc2/ (CcsIAS)1.53.0MAV _{MODE} =Iow and V _{REG} =2.8V, V _{CC} =3.4VU _{CC} Vicc2/ (CcsIAS)Image1.33.0MAV _{MODE} Urrent1.33.0MAImageU _{CC} Vicc2/ (CcsIAS)Image2.5ImageImageDC Turn On/Off Time1.26 <td>ACLR @ ±10MHz</td> <td></td> <td>-54</td> <td>-48</td> <td>dBc</td> <td></td>	ACLR @ ±10MHz		-54	-48	dBc		
Output VSWR Stability RuggednessImageImageImageNo obscillation >-65 dBcIM ProductsImageImageIM PoductsImageImageIM SMHzImageImageIM 10MHzImageImageIM 10MHzImage <t< td=""><td>Maximum I_{CC}</td><td>105</td><td>125</td><td>145</td><td>mA</td><td></td></t<>	Maximum I _{CC}	105	125	145	mA		
RuggednessIndIndIndIndNo damageIMIM10:1No damageIM ProductsIMIMIMIMIMIMIM 5MHzIMIMIMIB offset f_0 +5MHz with CW signal=-40 dBcIM 10MHzIMIMIMIF offset f_0 +10MHz with CW signal=-40 dBcPower SupplyIMIMIMIFSupply Voltage (V _{CC1} and V _{CC2})3.23.44.2VSupply Voltage (V _{CC1} and V _{CC2})3.23.44.2VIm Gain Idle Current (I _{CC1} /I _{CC2} /I _{CCBAS})Im7093mAV _{MCDE} =low and V _{REG} =2.8V, V _{CC} =3.4VImV _{MODE} =low and V _{REG} =2.8V, V _{CC} =1.5VV _{RCG} Gurrent (I _{CC1} /I _{CC2} /I _{CCBAS})Im3mAV _{MODE} =high and V _{REG} =2.8V, V _{CC} =1.5VImImV _{MODE} Current (I _{CC1} /I _{CC2} /I _{CCBAS})Im3mAV _{MODE} =high and V _{REG} =2.8V, V _{CC} =1.5VImImV _{MCDE} Current (I _{CC1} /I _{CC2} /I _{CCBAS})ImImImV _{MCDE} Current (I _{CC1} /I _{CCC} /I _{CCBAS}) <td>Input VSWR</td> <td></td> <td>2:1</td> <td></td> <td></td> <td></td>	Input VSWR		2:1				
IM Products Image: marked state				6:1		No oscillation >-65 dBc	
IM 5 MHz Image: marked state st				10:1		No damage	
IM 10 MHz -41 dBc IF offset $f_0 + 10 MHz$ with CW signal = 40 dBc Power Supply 3.2 3.4 4.2 V Supply Voltage (V _{CC1} and V _{CC2}) 3.2 3.4 4.2 V Come 0.6 V Low power with DC to DC Converter V _{CC} Bias 1.5 4.2 V Low power with DC to DC Converter High Gain Idle Current (I _{CC1} /I _{CC2} /I _{CCBIAS}) 1.5 4.2 V Low power with DC to DC Converter Low Gain Idle Current (I _{CC1} /I _{CC2} /I _{CCBIAS}) 1.5 4.2 V Low Gain MA V _{MGDE} Current (I _{CC1} /I _{CC2} /I _{CCBIAS}) 60 83 mA V _{MODE} =low and V _{REG} =2.8V, V _{CC} =3.4V V _{MGDE} Current (I _{CC1} /I _{CC2} /I _{CCBIAS}) 1 3 mA V _{MODE} =low and V _{REG} =2.8V, V _{CC} =1.5V V _{REG} Current (I _{CC1} /I _{CC2} /I _{CCBIAS}) 1 3 mA Supple Supple V _{MODE} Current (I _{CC1} /I _{CC2} /I _{CCBIAS}) 1 3 mA Supple Supple V _{REG} Current 1 2 6 uS Suple Supple Suple	IM Products						
Power Supply Image: Constraint of the sector o	IM 5MHz			-31	dBc	IF offset f_0 +5MHz with CW signal=-40dBc	
Supply Voltage (V_{CC1} and V_{CC2}) 3.2 3.4 4.2 V Low power with DC to DC Converter V_{CC} Bias 1.5 4.2 V Low power with DC to DC Converter High Gain Idle Current ($I_{CC1}/I_{CC2}/I_{CBIAS}$) 1.5 4.2 V Low Gain Idle Current ($I_{CC1}/I_{CC2}/I_{CBIAS}$) 70 93 mA V_{MODE} =low and V_{REG} =2.8V, V_{CC} =3.4V Low Gain Idle Current ($I_{CC1}/I_{CC2}/I_{CCBIAS}$) 60 83 mA V_{MODE} =high and V_{REG} =2.8V, V_{CC} =1.5V VREG Current 1 3 mA V_{MODE}=high and V_{REG} =2.8V, V_{CC} =1.5V VREG Current 1 3 mA V_{MODE}=high and V_{REG} =2.8V, V_{CC} =1.5V VREG Current 1 3 mA V_{MODE} Image: Comparison of the comparison	IM 10MHz			-41	dBc	IF offset f ₀ +10MHz with CW signal=-40dBc	
ImportanceImage (Cold and Cold)Image (Cold and Cold)Image (Cold and Cold)Voc Bias0.6VLow power with DC to DC ConverterVoc Bias1.54.2VHigh Gain Idle Current ($l_{CC1}/l_{C2}/l_{CGBIAS}$)7093mA V_{MODE} =low and V_{REG} =2.8V, V_{CC} =3.4VLow Gain Idle Current ($l_{CC1}/l_{C2}/l_{CGBIAS}$)6083mA V_{MODE} =high and V_{REG} =2.8V, V_{CC} =1.5VVREG Current13mAVMODEVMODE Current250uA1Prime1.26uSDC Turn On/Off Time225uSTotal Current (Power Down)0.20.5vAVREG Low Voltage (Power Down)00.5VVREG High Voltage (Recommended)2.752.82.95VREG High Voltage (Operational)2.73.0VVMODE Voltage00.5VHigh Gain Mode	Power Supply						
V _{CC} Bias1.54.2VHigh Gain Idle Current ($I_{CC1}/I_{CC2}/I_{CCBIAS}$)7093mA V_{MODE} =low and V_{REG} =2.8V, V_{CC} =3.4VLow Gain Idle Current ($I_{CC1}/I_{CC2}/I_{CCBIAS}$)6083mA V_{MODE} =high and V_{REG} =2.8V, V_{CC} =1.5VLow Gain Idle Current ($I_{CC1}/I_{CC2}/I_{CCBIAS}$)13mA V_{MODE} =high and V_{REG} =2.8V, V_{CC} =1.5VVREG Current13mAV_{MODE}VMODE Current120uAPR Turn On/Off Time126uSDC Turn On/Off Time225uS1Total Current (Power Down)0.20.5uA1V _{REG} Low Voltage (Power Down)00.5V1V _{REG} High Voltage (Operational)2.72.82.95VV _{MODE} Voltage00.5VHigh Gain Mode	Supply Voltage (V_{CC1} and V_{CC2})	3.2	3.4	4.2	V		
High Gain Idle Current ($I_{CC1}/I_{CC2}/I_{CCBIAS}$)To93mA V_{MODE} =low and V_{REG} =2.8V, V_{CC} =3.4VLow Gain Idle Current ($I_{CC1}/I_{CC2}/I_{CCBIAS}$)6083mA V_{MODE} =high and V_{REG} =2.8V, V_{CC} =1.5V V_{REG} Current13mA V_{MODE} =high and V_{REG} =2.8V, V_{CC} =1.5V V_{MODE} Current13mA V_{MODE} V_{MODE} Current13mA V_{MODE} V_{MODE} Current126uSDC Turn On/Off Time126uSDC Turn On/Off Time00.5uAV_{REG} Low Voltage (Power Down)00.5V V_{REG} High Voltage (Recom- mended)2.752.82.95V V_{REG} High Voltage (Operational)2.73.0V V_{MODE} Voltage00.5VHigh Gain Mode		0.6			V	Low power with DC to DC Converter	
$(I_{CC1}/I_{CC2}/I_{CCBIAS})$ Image: formed and the second s	V _{CC} Bias	1.5		4.2	V		
(I _{CC1} /I _{CC2} /I _{CCBIAS})IIIIIIV _{REG} CurrentI13mAIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-		70	93	mA	V_{MODE} = low and V_{REG} = 2.8 V, V_{CC} = 3.4 V	
V_{MODE} Current Image: Current 250 uA uA RF Turn On/Off Time 1.2 6 uS DC Turn On/Off Time 2 25 uS Total Current (Power Down) 0 0.5 uA V _{REG} Low Voltage (Power Down) 0 0.5 V V _{REG} High Voltage (Recommended) 2.75 2.88 2.95 V V _{REG} High Voltage (Operational) 2.7 3.0 V V _{MODE} Voltage 0 0.5 V High Gain Mode			60	83	mA	V_{MODE} =high and V_{REG} =2.8V, V_{CC} =1.5V	
RF Turn On/Off Time1.26 uS DC Turn On/Off Time225 uS DC Turn On/Off Time00.20.5 uA Total Current (Power Down)00.5 uA V_{REG} Low Voltage (Power Down)00.5 V V_{REG} High Voltage (Recommended)2.752.82.95 V V_{REG} High Voltage (Operational)2.73.0 V V_{MODE} Voltage00.5 V High Gain Mode	V _{REG} Current		1	3	mA		
DC Turn On/Off Time 2 25 uS Total Current (Power Down) 0.2 0.5 uA V_{REG} Low Voltage (Power Down) 0 0.5 V V_{REG} High Voltage (Recommended) 2.75 2.8 2.95 V V_{REG} High Voltage (Operational) 2.7 3.0 V V_{NODE} Voltage 0 0.5 V	V _{MODE} Current		250		uA		
Total Current (Power Down)00.5uAVREG Low Voltage (Power Down)00.5VVREG High Voltage (Recommended)2.752.882.95VVREG High Voltage (Operational)2.73.0VVMODE Voltage00.5VHigh Gain Mode	RF Turn On/Off Time		1.2	6	uS		
VREG Low Voltage (Power Down)00.5VVREG High Voltage (Recommended)2.752.82.95VVREG High Voltage (Operational)2.73.0VVNODE Voltage00.5VHigh Gain Mode	DC Turn On/Off Time		2	25	uS		
VREG High Voltage (Recommended)2.752.82.95VVREG High Voltage (Operational)2.73.0VVMODE Voltage00.5VHigh Gain Mode	Total Current (Power Down)		0.2	0.5	uA		
mended) Image: Constraint of the system Image: Constand of the system	V _{REG} Low Voltage (Power Down)	0		0.5	V		
V _{MODE} Voltage O O.5 V High Gain Mode		2.75	2.8	2.95	V		
	V _{REG} High Voltage (Operational)	2.7		3.0	V		
	V _{MODE} Voltage	0		0.5	V	High Gain Mode	
	V _{MODE} Voltage	2.0		3.0	V	Low Gain Mode	

RF5188

RFMD	•))))
rfmd.com	


Pin	Function	Description	Interface Schematic
1	RF IN	RF input internally matched to 50Ω . This input is internally AC-coupled.	
2	GND	Ground connection.	
3	VMODE	For nominal operation (High Power mode), V _{MODE} is set LOW. When set HIGH, devices are biased lower to improve efficiency at lower output levels.	
4	VREG	Regulated voltage supply for amplifier bias circuit. In power down mode, both V_{REG} and V_{MODE} need to be LOW (<0.5V).	
5	NC	No connection. Do not connect this pin to any external circuit.	
6	NC	No connection. Do not connect this pin to any external circuit.	
7	NC	No connection. Do not connect this pin to any external circuit.	
8	NC	No connection. Do not connect this pin to any external circuit.	
9	RF OUT	RF output. Internally AC-coupled.	
10	VCC2	Output stage collector supply. Please see the schematic for required exter- nal components.	
11	VCC2	Same as pin 10.	
12	VCC2	Same as pin 10.	
13	NC	No connection. Do not connect this pin to any external circuit.	
14	IM	Interstage matching. Connect to pin 15.	
15	VCC1/IM	First stage collector supply and interstage matching. A $4.7\mu\text{F}$ decoupling capacitor may be required. Connect to pin 14.	
16	VCCBIAS	Power supply input for the DC bias circuitry.	
Pkg Base	GND	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias. The pad should have a short thermal path to the ground plane.	

Package Drawing


VCC BIAS can be connected to VCC; however, VCC must be maintained above 1.5 V. L2 = 8.2 nH and may be needed to provide isolation between VCC1 and VCC2 depending on layout.

Circuit Optimization for various Output Power Requirements						
Output Power	(dBm)	Matching Component	Sample Part Number	Typical Efficiency (%)		
28		12nH	LQG15HN12NJ02D (Murata)	41		
27.5		N/A		42		
26.5		0.5 pF	GRM1555C1HR50BZ01E (Murata)	42		
26		1.0pF	GRM1555C1H1R0BZ01E (Murata)	42		
25		1.5pF	GRM1555C1H1R5BZ01E (Murata)	41		

Circuit Optimization for Various Output Power Requirements

Evaluation Board Schematic

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3µinch to 8µinch gold over 180µinch nickel.

PCB Land Pattern Recommendation

PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

PCB Metal Land Pattern

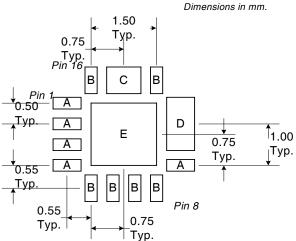


Figure 1. PCB Metal Land Pattern (Top View)

PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

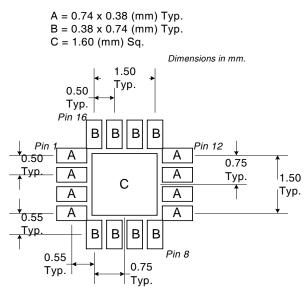


Figure 2. PCB Solder Mask Pattern (Top View)

Thermal Pad and Via Design

The PCB land pattern has been designed with a thermal pad that matches the die paddle size on the bottom of the device.

Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies.

The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203mm to 0.330mm finished hole size on a 0.5mm to 1.2mm grid pattern with 0.025mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a 4:1 ratio to achieve similar results.