Standard Products

RadHard-by-Design RHD5901 Quad Operational Amplifier Hi-Z Output Control

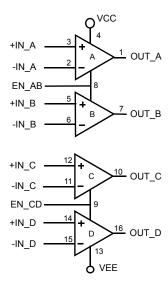
www.aeroflex.com/RHDseries April 8, 2013

FEATURES

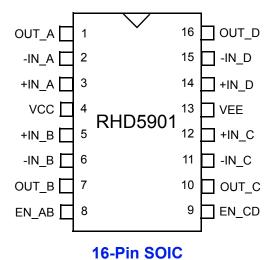
- \square Single power supply operation (3.3V to 5.0V) or dual power supply operation (± 1.65 to ± 2.5 V)
- □ Radiation performance
 - Total dose: >1Mrad(Si); Dose rate = 50 300 rads(Si)/s
 - ELDRS Immune
 - SEL Immune >100 MeV-cm²/mg - Neutron Displacement Damage >10¹⁴ neutrons/cm²
- □ Rail-to-Rail input and output range
- □ Enable pin to Enable/Disable amplifiers in pairs.
- □ Short Circuit Tolerant
- □ Full military temperature range
- □ Designed for aerospace and high reliability space applications
- □ Packaging Hermetic ceramic SOIC
 - 16-pin, .411"L x .293"W x .105"Ht
 - Weight 0.8 grams max

□ Aeroflex Plainview's Radiation Hardness Assurance Plan is DLA Certified to MIL-PRF-38534, Appendix G.

GENERAL DESCRIPTION


Aeroflex's RHD5901 is a radiation hardened, single supply, quad operational amplifier with enable in a 16-pin SOIC package. The RHD5901 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5901 especially suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD5901 is ideal for demanding military and space applications.

ORGANIZATION AND APPLICATION


The RHD5901 amplifiers are capable of rail-to-rail input and outputs. Performance characteristics listed are for general purpose operational 5V CMOS amplifier applications. The amplifiers will drive substantial resistive or capacitive loads and are unity gain stable under normal conditions. Resistive loads in the low kohm range can be handled without gain derating and capacitive loads of several nF can be tolerated. CMOS device drive has a negative temperature coefficient and the devices are therefore inherently tolerant to momentary shorts, although on chip thermal shutdown is not provided. All inputs and outputs are diode protected.

The devices will not latch with SEU events to above $100 \text{ MeV-cm}^2/\text{mg}$. Total dose degradation is minimal to above 1 Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10^{14} neutrons per cm² range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependent.

The RHD5901 is configured with enable/disable control. Pairs of amplifiers are put in a power-down condition with their outputs in a high impedance state. Several useful operational amplifier configurations are supported where more than one amplifier can feed an output with others disabled.

FIGURE 1: BLOCK DIAGRAM

FIGURE 2: PACKAGE PIN-OUT

Notes:

- 1. Package and lid are electrically isolated from signal pads.
- 2. EN_AB enables amplifiers A & B. EN_CD enables amplifiers C & D.

ABSOLUTE MAXIMUM RATINGS

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
Supply Voltage Vcc - VEE	+6.0	V
Input Voltage	VCC +0.4 VEE -0.4	V
Lead Temperature (soldering, 10 seconds)	300	°C
Thermal Resistance, Junction to Case, ⊝jc	7	°C/W
ESD Rating (MIL-STD-883, Method 3015, class 2)	2,000 - 3,999	V
Power @ 25°C	200	mW

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Typical	Units
+Vcc	Power Supply Voltage	3.3 to 5.0	V
Vсм	Input Common Mode Range	VCC to VEE	V

ELECTRICAL PERFORMANCE CHARACTERISTICS

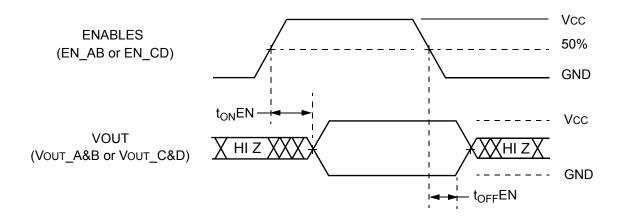
(Tc = -55°C TO +125°C, +VCC = +5.0V -- UNLESS OTHERWISE SPECIFIED)

Parameter	Symbol	Conditions Min		Тур	Max	Units	
Ouissent Supply Current 1/	Iccq	EN = 1, No Load		4.7	5.5	mA	
Quiescent Supply Current 1/		EN = 0, <u>2</u> /			300	nA	
Input Offset Voltage 1/	Vos		-3	0.80	3	mV	
Input Offset Current 1/	los		-100	10	100	pA	
Input Bias Current	In .	Tc = +25°C, -55°C <u>1</u> /	-100	10	100		
	lв	Tc = +125°C	-1000	100	1000	рA	
Common Mode Rejection Ratio	CMRR		70	90		dB	
Power Supply Rejection Ratio	PSRR		70	90		dB	
Output Voltage High	Voн	ROUT = 3.6 Kohms to GND	4.9			V	
Output Voltage Low	Vol	ROUT = 3.6 Kohms to VCC			0.1	V	
Short Circuit Output Current <u>2</u> /	Io(sink)	Vout to Vcc	-30		-75	mA	
	Io(source)	Vout to Vee	45	_	55	mA	
Slew Rate 1/	SR	RL = 8K, Gain = 1	2.0	3.3		V/uS	

ELECTRICAL PERFORMANCE CHARACTERISTICS (continued)

(Tc = -55° C TO $+125^{\circ}$ C, +Vcc = +5.0V -- UNLESS OTHERWISE SPECIFIED)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Open Loop Gain 1/	Aol	No Load	90	100		dB
Unity Gain Bandwidth 1/	UGBW	V RL = 10K		6.5		MHz
Input Voltage - Enable (EN AB,	Vні	High (Enabled)	3.5			V
EN_CD)	VLO	Low (Disabled)			1.5	V
Input Current - Enable (EN_AB, EN_CD)	lEN				10	nA
Channel Separation 2/		RL = 2K, f = 1.0KHz	84			dB
Input-Referred Voltage Noise 2/	e _n	F = 5 kHz		15		nV/ $\sqrt{\rm Hz}$
Phase Margin 2/	Φ_{m}	Tc = +25°C, No load	30			Deg


Notes:

- 1/ Specification derated to reflect Total Dose exposure to 1 Mrad(Si) @ +25°C.
- $\underline{2}$ / Not tested. Shall be guaranteed by design, characterization, or correlation to other test parameters.

SWITCHING CHARACTERISTICS

(Tc = -55° C TO $+125^{\circ}$ C, +Vcc = +5.0V -- UNLESS OTHERWISE SPECIFIED)

Parameter	Symbol	Conditions	Min	Max	Units
Output Delay (Enabled) <u>2</u> /	t _{ON} EN			500	ns
Output Delay (Disabled) 2/	t _{OFF} EN			100	ns

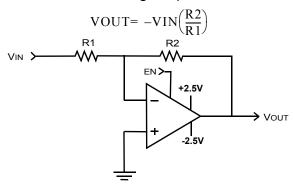
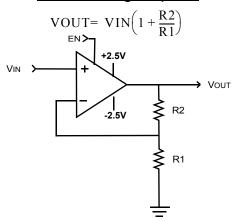
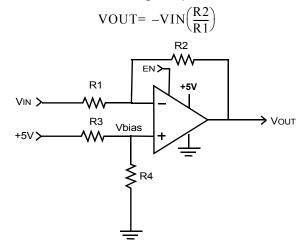


FIGURE 3: RHD5901 SWITCHING DIAGRAM


RHD5901 QUAD OPERATIONAL AMPLIFIER APPLICATION NOTES

APPLICATION NOTE 1: DUAL POWER SUPPLY AMPLIFIER

Inverting Amplifier



Non Inverting Amplifier

APPLICATION NOTE 2: SINGLE POWER SUPPLY AMPLIFIER

Inverting Amplifier

Non Inverting Amplifier

VOUT= VIN(
$$1+\frac{1}{R1}$$
)

+5V

R3

EN

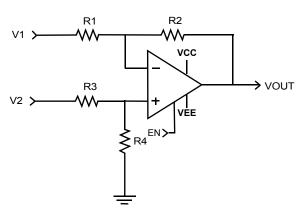
+5V

Vout

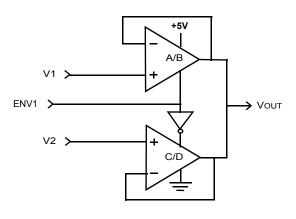
R4

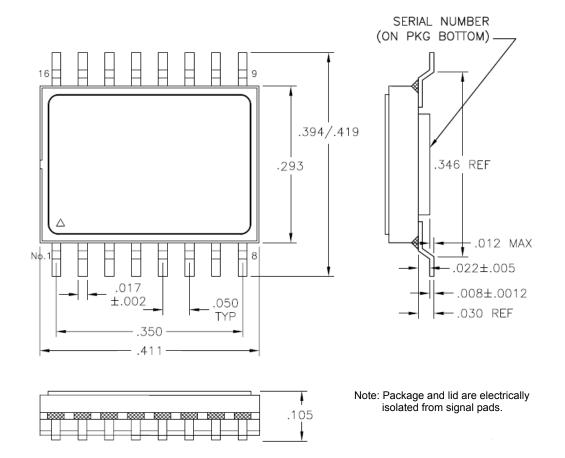
R2

R1


Note: For Vout DC @ mid range of common mode voltage range, VBIAS = 2.5/(1+R2/R1), VBIAS = +5*R4/(R3+R4)

APPLICATION NOTE 3: DIFFERENTIAL INPUT AMPLIFIER


APPLICATION NOTE 4: MULTIPLE AMPLIFIERS


Differential Input Amplifier

$$VOUT = \left(V2\left(\frac{R4}{R3 + R4}\right)\left(1 + \frac{R2}{R1}\right)\right) - \left(V1\frac{R2}{R1}\right)$$

Multiple Amplifiers - Selectable Output

FIGURE 4: PACKAGE OUTLINE

ORDERING INFORMATION

Model	DLA SMD#	Screening	Package
RHD5901-7	-	Commercial Flow, +25°C testing only	
RHD5901-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	
RHD5901-201-1S	5962-1024102KXC	In accordance with DLA SMD	16-pin SOIC Package
RHD5901-201-2S	5962-1024102KXA	III accordance with DLA Sivid	
RHD5901-901-1S	5962H1024102KXC	In accordance with DLA Certified RHA Program Plan to	
RHD5901-901-2S	5962H1024102KXA	In accordance with DLA Certified RHA Program Plan to RHA Level "H", 1Mrad(Si)	

EXPORT CONTROL:

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Department of State is required prior to the export of this product from the United States.

EXPORT WARNING:

Aeroflex's military and space products are controlled for export under the International Traffic in Arms Regulations (ITAR) and may not be sold or proposed or offered for sale to certain countries. (See ITAR 126.1 for complete information.)

 PLAINVIEW, NEW YORK
 INTERNATIONAL
 NORTHEAST

 Toll Free: 800-THE-1553
 Tel: 805-778-9229
 Tel: 603-888-3975

 Fax: 516-694-6715
 Fax: 805-778-1980
 Fax: 603-888-4585

 SE AND MID-ATLANTIC
 WEST COAST
 CENTRAL

 Tel: 321-951-4164
 Tel: 949-362-2260
 Tel: 719-594-8017

 Fax: 321-951-4254
 Fax: 949-362-2266
 Fax: 719-594-8468

www.aeroflex.com info-ams@aeroflex.com

Aeroflex Microelectronic Solutions reserves the right to change at any time without notice the specifications, design, function, or form of its products described herein. All parameters must be validated for each customer's application by engineering. No liability is assumed as a result of use of this product. No patent licenses are implied.

A passion for performance.

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused