Advanced

Standard Products

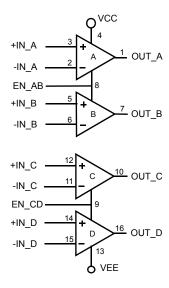
RadHard-by-Design RHD5904 Quad Operational Amplifier Instrumentation Amplifier with Enables

www.aeroflex.com/RHDseries September 26, 2012

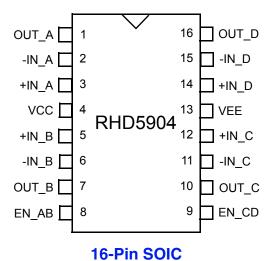
FEATURES

- \Box Single power supply operation (3.3V to 5.0V) or dual power supply operation (± 1.65 to ± 2.5 V)
- Radiation performance
 - Total dose: >1Mrad(Si); Dose rate = 50 300 rads(Si)/s
 - ELDRS Immune
 - SEL Immune >100 MeV-cm²/mg - Neutron Displacement Damage >10¹⁴ neutrons/cm²
- □ High Speed
- □ Rail-to-Rail input and output range
- □ Enable pin to Enable/Disable amplifiers in pairs.
- □ Short Circuit Tolerant
- □ Full military temperature range
- Designed for aerospace and high reliability space applications
- □ Packaging Hermetic ceramic SOIC
 - 16-pin, .417"L x .300"W x 0.105"Ht SOIC
 - Typical Weight 0.8 grams

GENERAL DESCRIPTION


Aeroflex's RHD5904 is a radiation hardened, single supply, high speed, quad operational amplifier with enable in a 16-pin SOIC package. The RHD5904 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5904 especially suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD5904 is ideal for demanding military and space applications.

ORGANIZATION AND APPLICATION


The RHD5904 amplifiers are capable of rail-to-rail input and outputs. Performance characteristics listed are for general purpose operational 5V CMOS amplifier applications. The amplifiers will drive substantial resistive or capacitive loads and are unity gain stable under normal conditions. Resistive loads in the low kohm range can be handled without gain derating and capacitive loads of several nF can be tolerated. CMOS device drive has a negative temperature coefficient and the devices are therefore inherently tolerant to momentary shorts, although on chip thermal shutdown is not provided. All inputs and outputs are diode protected.

The devices will not latch with SEU events to above $100 \text{ MeV-cm}^2/\text{mg}$. Total dose degradation is minimal to above 1Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10^{14} neutrons per cm² range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependant.

The RHD5904 is configured with enable/disable control. Pairs of amplifiers are put in a power-down condition with their outputs in a high impedance state. Several useful operational amplifier configurations are supported where more than one amplifier can feed an output with others disabled.

FIGURE 1: BLOCK DIAGRAM

FIGURE 2: PACKAGE PIN-OUT

Notes:

- 1. Package and lid are electrically isolated from signal pads.
- 2. EN_AB enables amplifiers A & B. EN_CD enables amplifiers C & D.

ABSOLUTE MAXIMUM RATINGS

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
Supply Voltage VCC - VEE	+6.0	V
Input Voltage	VCC +0.4 VEE -0.4	V
Lead Temperature (soldering, 10 seconds)	300	°C
Thermal Resistance, Junction to Case, ⊝jc	7	°C/W
ESD Rating	2.0	KV
Power @ 25°C	200	mW

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Typical	Units
+Vcc	Power Supply Voltage	3.3 to 5.0	V
Vсм	Input Common Mode Range	VCC to VEE	V

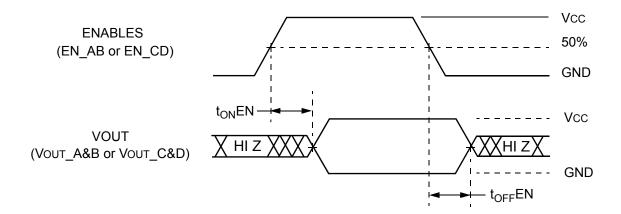
ELECTRICAL PERFORMANCE CHARACTERISTICS (Tc = -55°C to +125°C, +Vcc = +5.0V -- Unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Offset Voltage	Vos		-2		2	mV
Input Offset Current	los		-10		10	pA
Input Bias Current	lв		-20		20	pА
Input Offset TempCo 2/	Viost				10	uV/C
Common Mode Rejection Ratio	CMRR		70			dB
Power Supply Rejection Ratio	PSRR		70			dB
Output Voltage High	Voн	ROUT = 3.6 Kohms to GND	4.9			V
Output Voltage Low	Vol	ROUT = 3.6 Kohms to VCC			0.1	V
Short Circuit Output Current 2/	lo(sink)	Vout to Vcc	-63			mA
	Io(source)	VOUT to VEE			45	mA
Slew Rate	SR	RL = 8K	2.5			V/uS
Open Loop Gain 2/	Aol	No Load	100			dB
Unity Gain Bandwidth	UGBW	RL = 10K	5			MHz

ELECTRICAL PERFORMANCE CHARACTERISTICS (continued)

(Tc = -55° C to $+125^{\circ}$ C, +Vcc = +5.0V -- UNLESS OTHERWISE SPECIFIED)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage - Enable (EN_AB,	VHI	High (Enabled)	70% VCC - VEE			٧
EN_CD)	VLO	Low (Disabled)			30% VCC - VEE	٧
Input Current - Enable (EN_AB, EN_CD)	len				100	nA
Quiescent Supply Current	Iccq	All Amplifiers Enabled, No Load			5.5	mA
		All Amplifier Disabled			1	uA
Channel Separation 2/		RL = 2K, f = 1.0KHz	90			dB
Input-Referred Voltage Noise 2/	e _n	F = 1 kHz			TBD	V/√Hz
Phase Margin 2/	Φ_{m}		TBD			Deg


Notes:

- 1/ Specification derated to reflect Total Dose exposure to 1 Mrad(Si) @ +25°C.
- 2/ Not tested. Shall be guaranteed by design, characterization, or correlation to other test parameters.

SWITCHING CHARACTERISTICS

(Tc = -55°C TO +125°C, +Vcc = +5.0V -- UNLESS OTHERWISE SPECIFIED)

Parameter	Symbol	Conditions	Min	Max	Units
Output Delay (Enabled)	t _{ON} EN			100	ns
Output Delay (Disabled)	t _{OFF} EN			100	ns

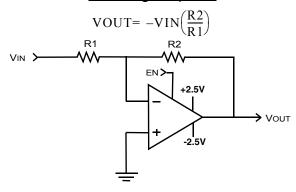
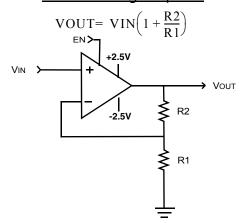
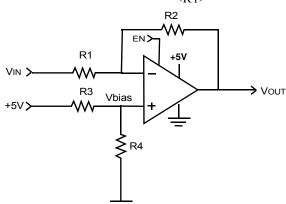


FIGURE 3: RHD5904 SWITCHING DIAGRAM


RHD5904 QUAD OPERATIONAL AMPLIFIER APPLICATION NOTES

APPLICATION NOTE 1: DUAL POWER SUPPLY AMPLIFIER

Inverting Amplifier


Non Inverting Amplifier

APPLICATION NOTE 2: SINGLE POWER SUPPLY AMPLIFIER

Inverting Amplifier

$$VOUT = -VIN\left(\frac{R2}{R1}\right)$$
R2

Non Inverting Amplifier

VOUT = VIN
$$\left(1 + \frac{1}{R1}\right)$$

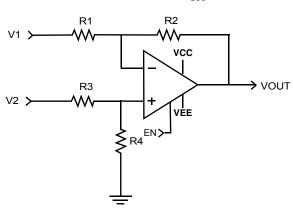
+5V

Vout

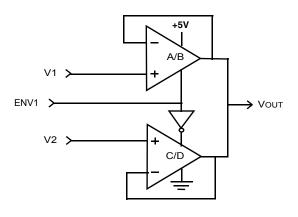
R4

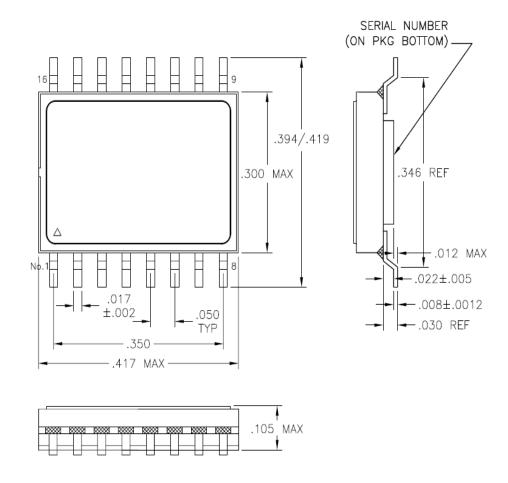
R2

R1


Note: For Vout DC @ mid range of common mode voltage range, VBIAS = 2.5/(1+R2/R1), VBIAS = +5*R4/(R3+R4)

APPLICATION NOTE 3: DIFFERENTIAL INPUT AMPLIFIER


APPLICATION NOTE 4: MULTIPLE AMPLIFIERS


Differential Input Amplifier

$$VOUT = \left(V2\left(\frac{R4}{R3 + R4}\right)\left(1 + \frac{R2}{R1}\right)\right) - \left(V1\frac{R2}{R1}\right)$$

Multiple Amplifiers - Selectable Output

FIGURE 4: PACKAGE OUTLINE

ORDERING INFORMATION

Model	DSCC SMD #	Screening	Package
RHD5904-7	-	Commercial Flow, +25°C testing only	
RHD5904-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	
RHD5904-201-1S	5962-1024104KXC	DSCC SMD Pending	16-pin SOIC Package
RHD5904-201-2S	5962-1024104KXA	DOCC SWID Felluling	coro i donago
RHD5904-901-1S	5962H1024104KXC	DSCC SMD and Radiation Certification Pending	
RHD5904-901-2S	5962H1024104KXA	DOCC SIMD and Nadiation Certification Fending	

EXPORT CONTROL:

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Department of State is required prior to the export of this product from the United States.

EXPORT WARNING:

Aeroflex's military and space products are controlled for export under the International Traffic in Arms Regulations (ITAR) and may not be sold or proposed or offered for sale to certain countries. (See ITAR 126.1 for complete information.)

PLAINVIEW, NEW YORK INTERNATIONAL **NORTHEAST** Toll Free: 800-THE-1553 Tel: 805-778-9229 Tel: 603-888-3975 Fax: 516-694-6715 Fax: 805-778-1980 Fax: 603-888-4585

SE AND MID-ATLANTIC Tel: 321-951-4164 Fax: 321-951-4254

WEST COAST Tel: 949-362-2260 Fax: 949-362-2266 CENTRAL Tel: 719-594-8017

Fax: 719-594-8468

www.aeroflex.com info-ams@aeroflex.com

Aeroflex Microelectronic Solutions reserves the right to change at any time without notice the specifications, design, function, or form of its products described herein. All parameters must be validated for each customer's application by engineering. No liability is assumed as a result of use of this product. No patent licenses are implied.

A passion for performance.

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused