

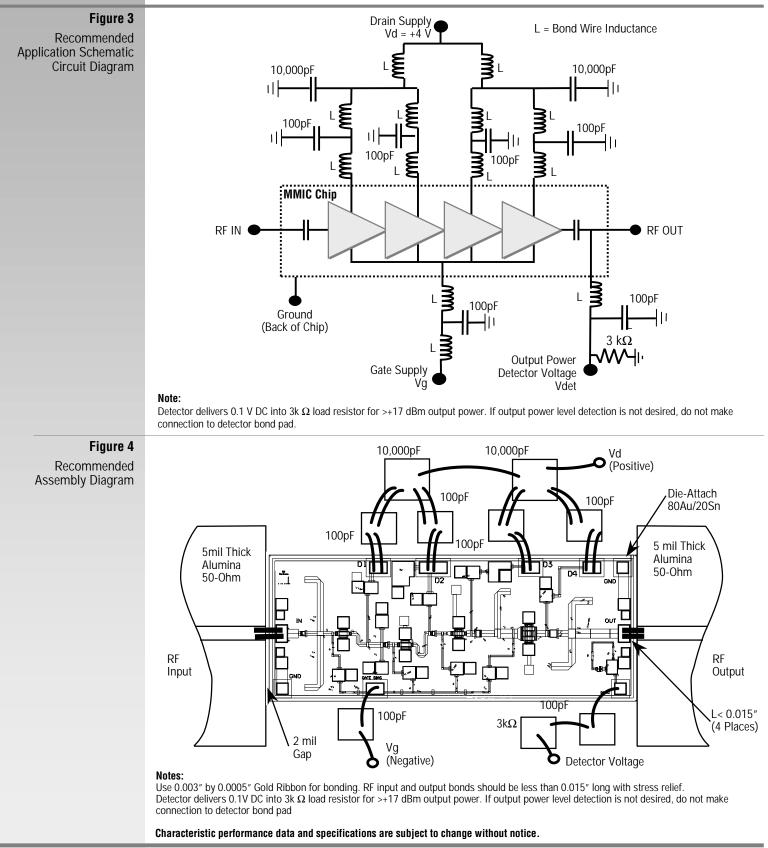
PRODUCT INFORMATION

									T(OB		01.000	/
Description	The RMWD38001 is a 4-stage GaAs MMIC amplifier designed as a 37 to 40 GHz Driver Amplifier for use in point to point radios, point to multi-point communications, LMDS, and other millimeter wave applications. In conjunction with other Fairchild Semiconductor amplifiers, multipliers and mixers it forms part of a complete 38 GHz transmit/receive chipset. The RMWD38001 utilizes Fairchild Semiconductor's 0.25µm power PHEMT proceoss and is sufficiently versatile to serve in a variety of driver amplifier applications.											
Features	 1dB comp Voltage de 	trate nal gain 25 c ressed Pout tector inclu 3.0 mm x 1.	: 18 dE ded to	Sm (typ.)	out						۰ ۲	
Absolute		Parameter				Syml	hol	Value		Units		
Raings	Ratings							+6		Volts		
		Positive DC voltage (+4 V Typical) Negative DC voltage				Vd Vg Vdg		-2	Volts			
	Simultaneous (Vd - Vg)				8							
		Positive DC Current RF Input Power (from 50 Ω source)				I _D 173 P _{IN} +8			mA			
								dBm				
		Operating	Basepla	ate Temperat	ture	T _c		-30 to +85		°C		
		Storage Te	mperat	ure Range		T _{ste}	9	-55 to +125		°C		
		Thermal Resistance (Channel to Backside)			R _{jc}	:	126		°C/W			
Electrical							_					
Characteristics	Parameter		Min	Тур	Max	Unit	Par	rameter	Min	Тур	Max	Unit
(At 25 °C 50Ω	Frequency Rar	nge	37		40	GHz		in Current at Saturated:		100		
system, Vd=+4 V,	Gate Supply Voltage (Vg) ¹			-0.4		V		Pin = -5.5 dBm		120		mA
Quiescent Current	Gain Small Sig			0.5				wer Added Efficiency (PAE): at P1 dB		13		%
(Idq)= 105 mA	Pin = -10 dI		21	25		dB		ut Return Loss		10		,,,
	Gain Variation vs Frequency		;y	2		dB		(Pin = -10 dBm)		15		dB
	Gain at 1dB Compression Power Output at 1 dB			24		dB		tput Return Loss				
	Compressic			18		dBm		(Pin = -10 dBm)		9		dB
	Power Output Saturated:					OIP			28		dBm	
	Pin = -5.5 d	Bm	15.5	19		dBm		ise Figure		6		dB
	Drain Current Pin = -10 dl			105		mA		tector Voltage (Pout = +17 dBm)		0.1		v
		Drain Current at 1 dB Compression										

Note:

1. Typical range of gate voltage is -0.7 to -0.1 V to set Idq of 105 mA.

Characteristic performance data and specifications are subject to change without notice.



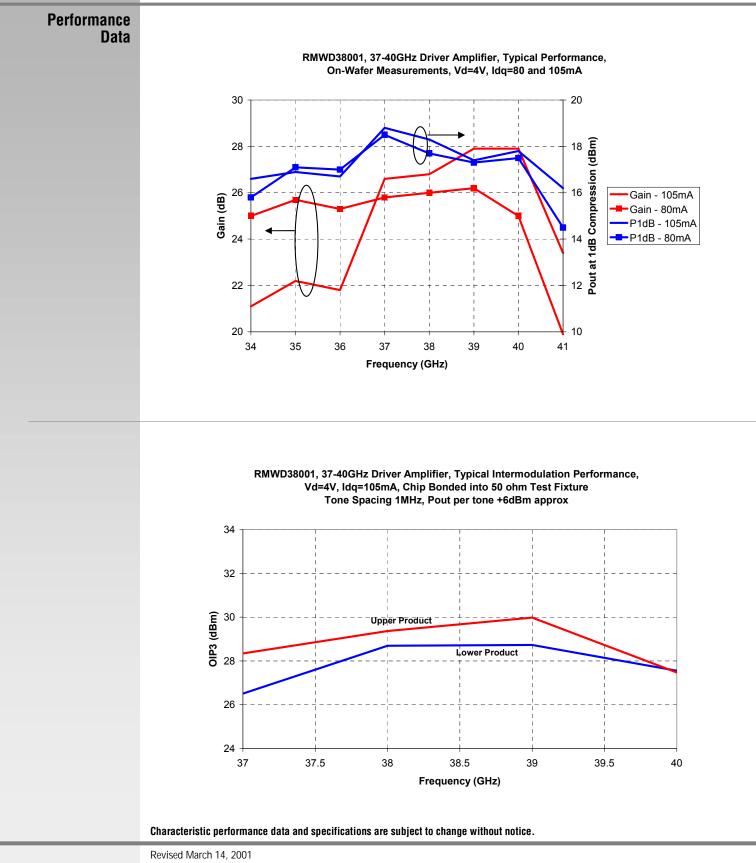
PRODUCT INFORMATION

Application Information	 CAUTION: THIS IS AN ESD SENSITIVE DEVICE. Chip carrier material should be selected to have GaAs compatible thermal coefficient of expansion and high thermal conductivity such as copper molybdenum or copper tungsten. The chip carrier should be machined, finished flat, plated with gold over nickel and should be capable of withstanding 325°C for 15 minutes. Die attachment should utilize Gold/Tin (80/20) eutectic alloy solder and should avoid hydrogen environment for PHEMT devices. Note that the backside of the chip is gold plated and is used as RF and DC ground. These GaAs devices should be handled with care and stored in dry nitrogen environment to prevent contamination of bonding surfaces. These are ESD sensitive devices and should be handled with appropriate precaution including the use of wrist grounding straps. All die attach and wire/ribbon bond equipment must be well grounded to prevent static discharges through the device. Recommended wire bonding uses 3 mils wide and 0.5 mil thick gold ribbon with lengths as short as practical allowing for appropriate stress relief. The RF input and output bonds should be typically 0.012" long corresponding to a typical 2 mil gap between the chip and the substrate material.
Figure 1 Functional Block Diagram	Drain Supply Drain Supply Drain Supply Drain Supply Vd1 Vd2 Vd3 Vd4 FIN Output Four RF OUT MMIC Chip Ground Gate Supply Output Power Detector Voltage Vdet Note: Detector delivers 0.1 V DC into 3k Ω load resistor for >+17 dBm output power. If output power level detection is not desired, do not make connection to detector bond pad.
Figure 2 Chip Layout and Bond Pad Locations Chip Size is 3.0 mm x 1.2 mm. Back of chip is RF and DC ground	Dimensions in mm

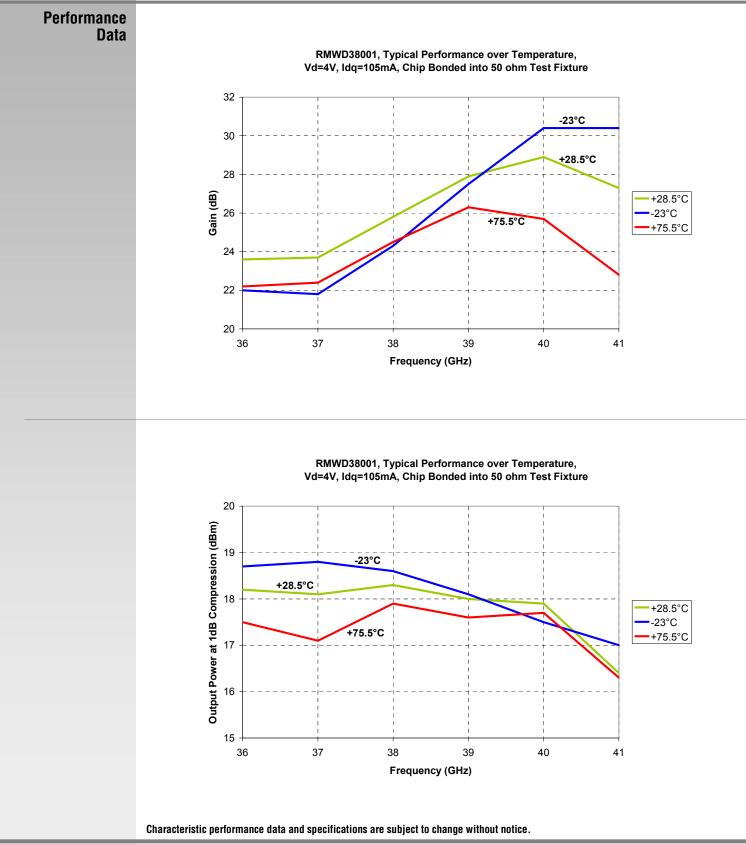
PRODUCT INFORMATION

Recommended Procedure	CAUTIO	N: LOSS OF GATE VOLTAGES (Vg) WHILE DRAI AMPLIFIER CHIP.	N VOLTA	GES (Vd) IS PRESENT MAY DAMAGE THE
for Biasing and	The follo	owing sequence of steps must be followed to prop	erly test	the amplifier:
Operation	Step 1:	Turn off RF input power.	Step 4:	Adjust gate bias voltage to set the quiescent
	Step 2:	Connect the DC supply grounds to the grounds		current of Idq=105 mÅ.
		of the chip carrier. Slowly apply negative gate bias supply voltage of -1.5 V to Vgs.	Step 5:	After the bias condition is established, RF input signal may now be applied at the
	Step 3:	Slowly apply positive drain bias supply		appropriate frequency band.
		voltages of +4 V to Vd.	Step 6:	Follow turn-off sequence of:
				(i) Turn off RF Input Power
				(ii) Turn down and off drain voltage (Vd).
				(iii) Turn down and off gate voltage (Vg).

Characteristic performance data and specifications are subject to change without notice.



PRODUCT INFORMATION



PRODUCT INFORMATION

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTMFACT Quiet SeriesTMActiveArrayTMFASTBottomlessTMFASTrTMCoolFETTMFRFETTMCROSSVOLTTMGlobalOptoisolatorTMDOMETMGTOTMEcoSPARKTMHiSeCTME²CMOSTMI²CTMEnSignaTMImpliedDisconnectTMFACTTMISOPLANARTMAcross the board.Around the world.TMThe Power FranchiseTMProgrammable Active DroopTM	LittleFET TM MICROCOUPLER TM MicroFET TM MicroPak TM MICROWIRE TM MSX TM MSXPro TM OCX TM OCXPro TM OCXPro TM OPTOLOGIC [®] OPTOPLANAR TM PACMAN TM POP TM	Power247 [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] SILENT SWITCHER [®] SMART START [™] SPM [™] Stealth [™] SuperSOT [™] -3	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UHC [™] UltraFET [®] VCX [™]
--	---	---	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.