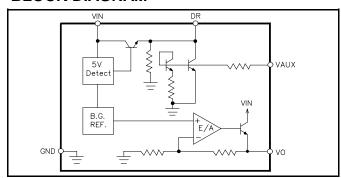


TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

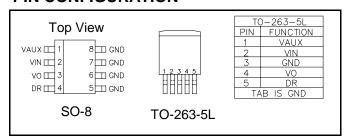
DESCRIPTION

The SC1534 is designed to maintain a glitch-free 3.3V output when at least one of two inputs, 5V (VIN) and 3.3V (VAUX), is present.

Whenever VIN exceeds a predetermined threshold value, the internal 3.3V linear regulator is enabled, and DR is pulled high.


When VIN falls below a lower threshold value, DR is pulled low and the internal linear regulator is turned off. DR has been designed to drive the gate of an external low threshold P-channel MOSFET, which can be used to connect the 3.3V supply directly to the regulator output. This ensures an uninterrupted 3.3V output even if VIN falls out of specification. A maximum $R_{\text{DS}(\text{ON})}$ of $200\text{m}\Omega$ is recommended.

When both supplies are simultaneously available, the drive pin (DR) will be pulled High, turning off the external PMOS switch.


The internal 5V detector has its upper threshold (for VIN rising) set to 4.22V (typical) while the lower threshold (for VIN falling) is at 4.05V (typical) giving a hysteresis of approximately 170mV.

The SC1534 is available in the popular SO-8 and 5-lead TO-263 surface mount packages.

BLOCK DIAGRAM

PIN CONFIGURATION

FEATURES

- Glitch-free transition between input sources
- Internal logic selects input source
- Gate drive for external PMOS bypass switch
- 5V detector with hysteresis
- 1% regulated output voltage accuracy
- 400mA load current capability
- SO-8 and TO-263 packages

APPLICATIONS

- Desktop Computers
- Network Interface Cards (NICs)
- PCMCIA/PCI Interface Cards
- Cardbus[™] Technology
- Power supplies with multiple input sources

ORDERING INFORMATION

Part Number ⁽¹⁾	Package
SC1534CM.TR	TO-263-5L
SC1534CS.TR	SO-8

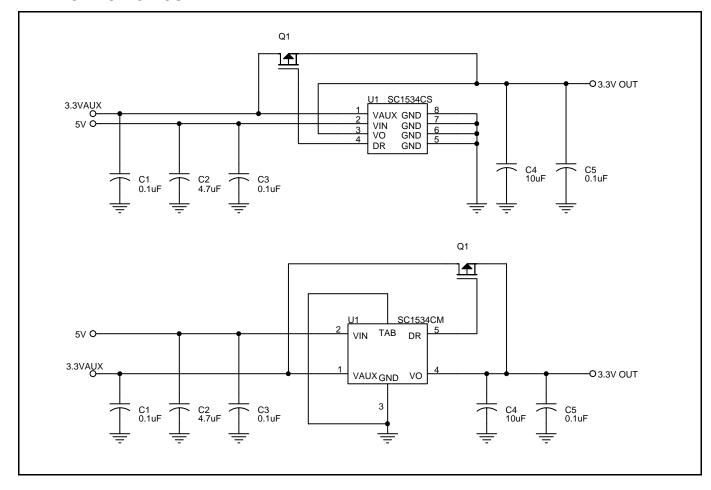
Note:

(1) Only available in tape and reel packaging.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Maximum	Units	
Input Supply Voltage	VIN	-0.5 to +7	V	
Auxiliary Supply Voltage	VAUX	-0.5 to +7	V	
LDO Output Current	Io	10 to 400	mA	
Operating Ambient Temperature Range	T _A	-5 to +70	°C	
Operating Junction Temperature Range	T _J	-5 to +125	ô	
Storage Temperature Range	T _{STG}	-65 to +150	ô	
Lead Temperature (Soldering) 10 Sec	T _{LEAD}	300	ô	
Thermal Impedance Junction to Ambient SO-8 ⁽¹⁾ TO-263	θ_{JA}	65 60	°C/W	
Thermal Impedance Junction to Case SO-8 TO-263	θ _{ЈС}	39 3	°C/W	
ESD Rating	ESD	2	kV	

Note:


(1) 1 inch square of 1/16" FR-4, double sided, 1 oz. minimum copper weight.

PIN DESCRIPTION

Pin Name	SO-8 Pin #	TO-263-5L Pin #	Pin Function
DR	4	5	Driver output for external P-channel MOSFET pass element.
GND	5,6,7,8	3/TAB	Logic and power ground.
VAUX	1	1	This is the auxiliary input supply, nominally 3.3V.
VIN	2	2	This is the main input supply for the IC, nominally 5V.
VO	3	4	LDO 3.3V output.

APPLICATION CIRCUIT

NOTE:

(1) External switch (Q1): use a low threshold P-channel MOSFET such as Fairchild FDN338P or International Rectifier IRF7604, or equivalent. (PMOS, typical gate threshold voltage $_{\sim}$ 1V, R_{DS(ON)} < 200m Ω at V_{GS} = 2.7V).

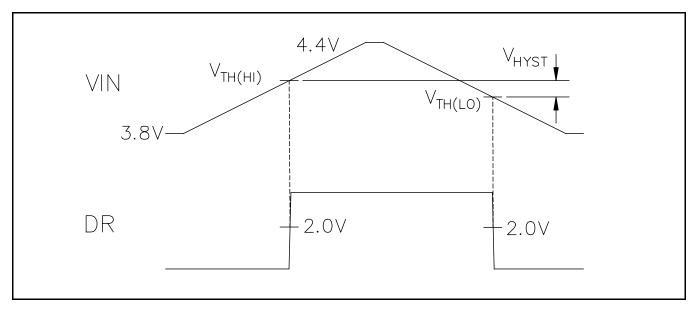
ELECTRICAL CHARACTERISTICS

Unless specified, T_A = 25°C, VIN = 5V, VAUX = 3.3V, I_O = 400mA, C_O = 10 μ F. Values in **bold** apply over full operating temperature range.

Parameter	Symbol	Test Conditions	MIN	TYP	MAX	Units
VIN			1	1	1	1
Supply Voltage	VIN	VAUX = 0V	4.35	5.00	5.50	V
Quiescent Current	Ι _Q	$VIN = 5V$, $VAUX = 0V$, $I_O = 0mA$		8.0	11.0	mA
					13.0	
		$VIN = 5V$, $VAUX = 3.3V$, $I_O = 0mA$		10.0	14.0	mA
					15.0	
Reverse Leakage From VAUX	I _{VIN}	VAUX = 3.6V, VIN = 0V, I _O = 0mA		-1.5	-3.0	mA
					-4.0	ſ
VAUX	-				1	
Supply Voltage	VAUX		3.0	3.3	3.6	V
Quiescent Current	I _{Q(AUX)}	$VAUX = 3.3V$, $VIN = 0V$, $I_0 = 0mA$		8.0	11.0	mA
					13.0	
		VAUX = 3.3V, VIN = 5V, I _O = 0mA		1.5	2.5	mA
					3.0	
Reverse Leakage From VIN	I _{VAUX}	VIN = 5.5V, VAUX = 0V, I _O = 0mA		-5.0	-50.0	μΑ
					-100.0	
5V Detect ⁽¹⁾⁽²⁾⁽³⁾						
Low Threshold Voltage	$V_{TH(LO)}$	VIN Falling, I _O = 20mA	3.92	4.05	4.18	V
			3.90		4.20	
Hysteresis	V _{HYST}		90	170		mV
			80			
High Threshold Voltage	$V_{TH(HI)}$	VIN Rising, I _O = 20mA			4.35	V
vo						
LDO Output Voltage	VO	I _O = 20mA	3.267	3.300	3.333	V
		$4.35V \le VIN \le 5.5V, 0mA \le I_0 \le 400mA$	3.234 3.36		3.366	
Output Current	Io				400	mA
Line Regulation	REG _(LINE)	VIN = 4.35V to 5.5V		0.20	0.60	%
					0.80	1
Load Regulation	REG _(LOAD)	I _O = 20mA to 400mA		0.20	0.80	%
					1.00	

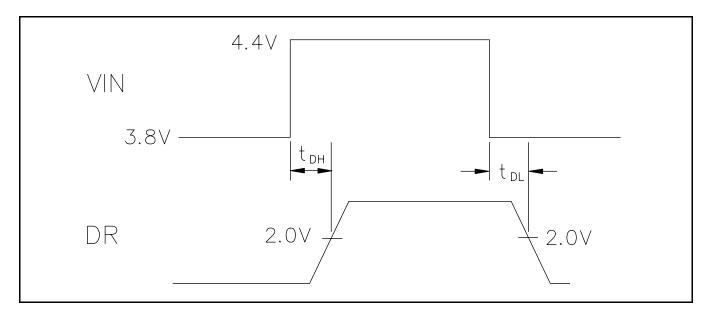
ELECTRICAL CHARACTERISTICS

Unless specified, $T_A = 25$ °C, VIN = 5V, VAUX = 3.3V, $I_O = 400$ mA, $C_O = 10\mu$ F. Values in **bold** apply over full operating temperature range.


Parameter	Symbol	Test Conditions		TYP	MAX	Units
Drive Output						
Drive Voltage	V_{DR}	4.35V ≤ VIN ≤ 5.5V, I _{DR} = 200µA	3.4	VIN - 0.8		V
			3.3			
		$VIN < V_{TH(LO)}, I_{DR} = -200\mu A$		35	150	mV
					250	
Peak Drive Current	I _{DR(PK)}	Sinking: VIN = 3.9V, V _{DR} = 1V;	7			mA
		Sourcing: VIN = 4.35V, VIN - V_{DR} = 2.5V	6			
Drive High Delay ⁽¹⁾⁽⁴⁾	t _{DH}	C _{DR} = 1.2nF, VIN ramping up, measured		0.5	1.0	μs
		from VIN = $V_{TH(HI)}$ to $V_{DR} = 2V$			2.0	
Drive Low Delay ⁽¹⁾⁽⁴⁾	t _{DL}	C _{DR} = 1.2nF, VIN ramping down, measured		0.5	1.0	μs
		from $VIN = V_{TH(LO)}$ to $V_{DR} = 2V$			2.0	

NOTES:

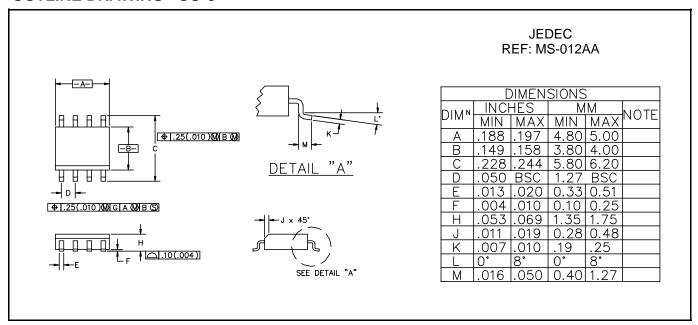
- (1) Guaranteed by design.
- (2) See 5V Detect Thresholds on page 5.
- (3) Recommended source impedance for 5V supply: \leq 0.125 Ω . This will ensure that I_O x R_{SOURCE} < V_{HYST}, thus avoiding DR toggling during 5V detect threshold transitions.
- (4) See Timing Diagram on page 5.


5V DETECT THRESHOLDS

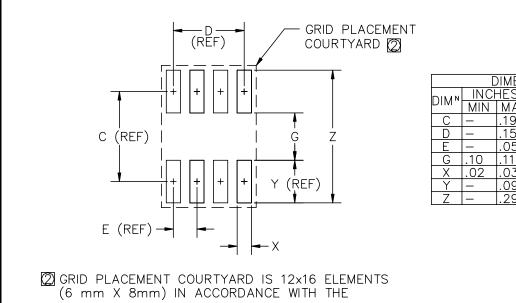
NOTE:

(1) VIN rise and fall times (10% to 90%) to be \geq 100 μ s.

TIMING DIAGRAM

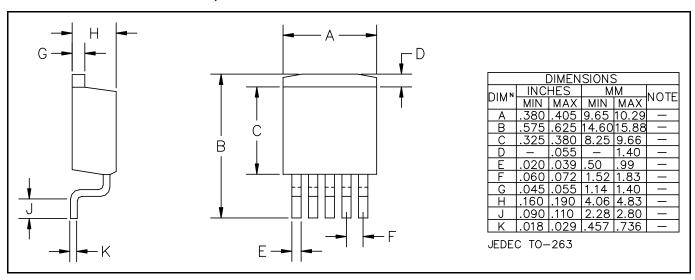


NOTE:

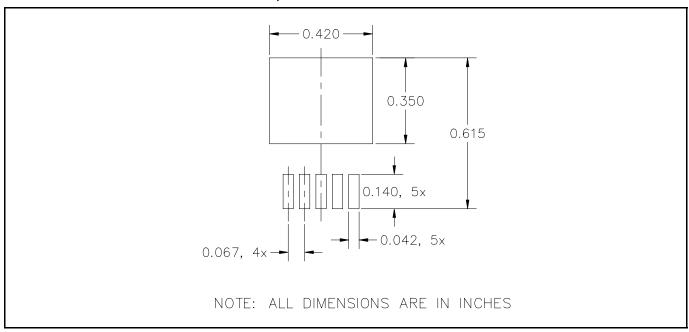

(1) VIN rise and fall times (10% to 90%) to be \leq 100ns.

OUTLINE DRAWING - SO-8

MINIMUM LAND PATTERN - SO-8



DIMENSIONS (1)					
DIM	INCHES		М	NOTE	
	MIN	MAX	MIN	MAX	INOTE
С	_	.19	1	5.00	_
D	_	.15	ı	3.81	_
Ε	_	.05	ı	1.27	_
G	.10	.11	2.60	2.80	_
Χ	.02	.03	.60	.80	_
Υ	_	.09		2.40	_
Ζ	_	.29	7.20	7.40	_


- INTERNATIONAL GRID DETAILED IN IEC PUBLICATION 97.
- (1) CONTROLLING DIMENSION: MILLIMETERS

DEVICE OUTLINE - TO-263, 5 PIN

MINIMUM LAND PATTERN - TO-263, 5 PIN

ECN00-1212