SM3905

DESCRIPTION

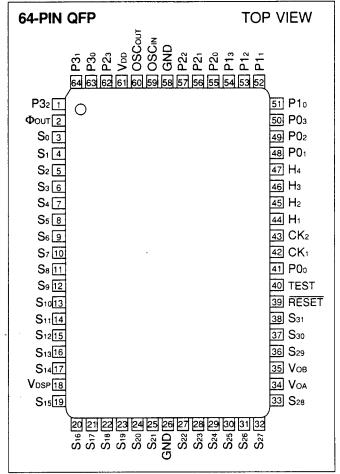
The SM3905 is a CMOS 4-bit single-chip microcomputer incorporating 4-bit parallel processing function, carrier output circuit for remote control, ROM, RAM, I/O ports, serial interface, and timer/counter. It provides 5 kinds of interrupts and subroutine stack using a RAM area. Provided with 128 segments LCD drive circuit, this microcomputer is applicable to multi-functional AV remote control system, or any other similar system with a Low power consumption.

FEATURES

- ROM capacity : 4 096 x 8 bits
- RAM capacity : 160 x 4 bits (including 32 x 4 bits) display RAM)
- Instruction sets : 98
- A RAM area is used as stack area
- I/O port :

Input	4
Output	11
	+15 (also used as LCD
	segment port)

Interrupts :

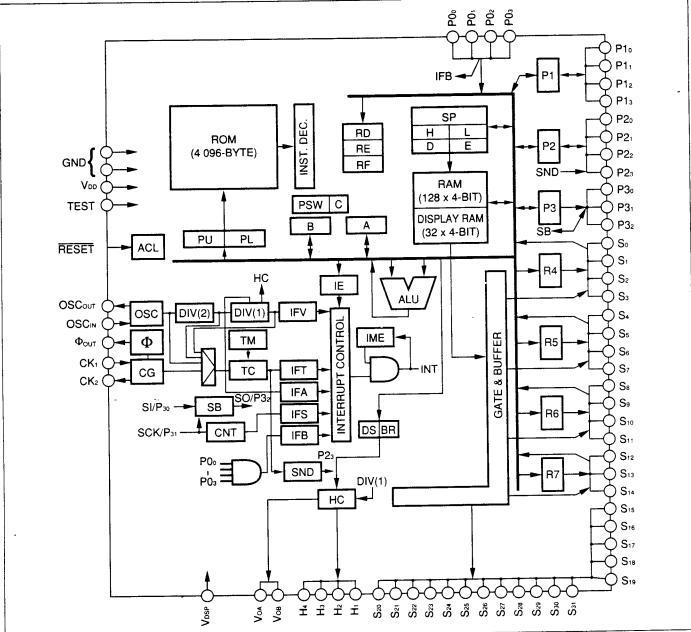

Internal interrupts x 4 (timer/counter, f4 signal, serial I/O, divider overflow)

External interrupts x 1 (P0 signal)

- Timer/counter : 8 bits x 1
- Built-in main clock oscillator for system clock
- Built-in sub clock oscillator for real time clock
- Built-in 15 stages divider for real time clock
- Built-in LCD driver : 128 segments, 1/3 bias, 1/4 duty cycle (if LCD drive circuit is used, a crystal oscillator circuit needs to be constituted between OSCIN and OSCOUT.)

4-Bit Single-Chip Microcomputer (LCD Driver)

PIN CONNECTIONS



- Built-in carrier output circuit for remote control Carrier frequency 37.9 kHz Basic oscillaton frequency (main clock) 455 kHz 1/3 or 1/2 (mask option) Duty cycle Reversal polarity (mask option)
- Instruction cycle time :

8.79 µs (TYP., 455 kHz, at 3 V)

- Buzzer output
- Standby function
- Supply voltage : 2.7 to 3.6 V
- Package : 64-pin QFP (QFP064-P-1420)

BLOCK DIAGRAM

Nomenclature

Nomencia	iture		
А, В	: Accumulators	IME	: Interrupt master enable F/F
ACL	: Auto clear	P1-P3	: Hegisters
ALU	: Arithmetic logic unit	PL, PU	: Program counters
BR, DS	: Common signal control F/F	PSW	: Program status word register
CG	: Clock generator	R4-R7	: General-purpose registers
DIV	: Divider	RD, RE, RF	: Mode registers
D, E, H, L	: General-purpose registers	SB	: Shift register
Ю, С, П, С НС	: Common signal circuit	SP	: Stack pointer
IE	: Interrupt enable F/F	TC	: Count register
	•	ТМ	: Modulo register
IFA, IFB IFS, IFT, IF	: Interrupt requests V	Φ_{OUT}	: Carrier control circuit

PIN DESCRIPTION

SYMBOL	I/O	CIRCUIT TYPE	FUNCTION
P00-P03	1	Pull up	Acc←P0₀-P0₃
P10-P13	I/O	Pull up	I/O selectable by instructions
P20-P23	I/O	Pull up	I/O selectable independently
F20-F23	1/0	Pull up	Sound output only when P23 pin is used as an output
P30-P33	I/O	Pull up	Serial interface I/O by setting the mode register RE
S0-S14	O or		Selectable between segment ports and I/O ports through
30-314	I/O		an RC register
S15-S31	0		Display RAM contents output as LCD segment signals
H1-H4	0		4-value output capability; used for LCD common output
TEST		Pull down	For test (connected to GND normally)
RESET	1	Pull up	Auto clear
Φουτ	0		Carrier output remote control
CK1, CK2			For system clock oscillation
OSCIN, OSCOUT			For clock oscillation
Vdsp, Voa, Vob			Power supply for LCD driver
VDD, GND			Power supply for logic circuit

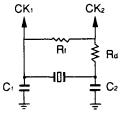
ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VDD	-0.3 to +7	V	4
Supply voltage	VDSP	-0.3 to +7	V	
Input voltage	Vin	-0.3 to VDD +0.3	V	1
Output voltage	Vout	-0.3 to VDD +0.3	V	1
Output current	Ιουτ	20	mA	2
Operating temperature	TOPR	-20 to +70	°C	
Storage temperature	Тѕтс	-55 to +150	°C	

NOTES :

1. The maximum applicable voltage on any pin with respect to GND.

2. Sum of current from (or flowing into) output pins.


RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	VDD		2.7		3.6	V	
	VDSP		2.7		Vdd	V	
Basic oscillation frequency	f	V _{DD} = 2.7 to 3.6 V		455		kHz	1
Instruction cycle	t	VDD = 2.7 to 3.6 V		8.79		μs	••••••
Crystal oscillation frequency	fosc			32.768		kHz	

NOTE :

1. Starting condition : within 10 seconds after power on.

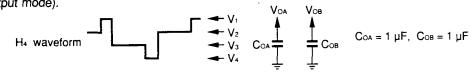
Oscillation Circuit

Oscillator : KBR-455B (Kyocera)
$R_i = 1 M\Omega$	
Rd = 5.6 kΩ	
C1 = 220 pF	
$C_2 = 100 \text{pF}$	

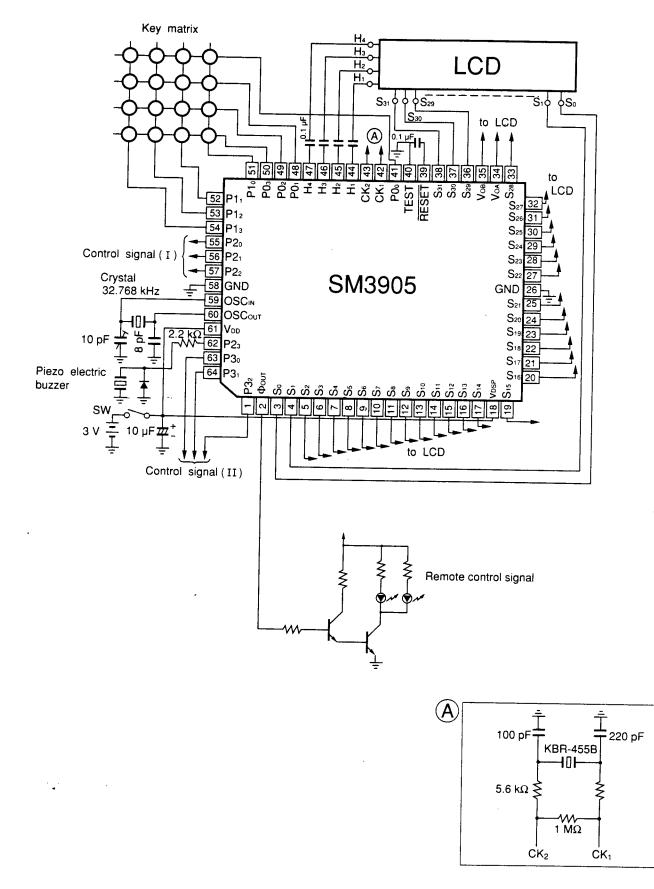
OSCIN	OSCOUT
Cry:	stal 🛔
10	• 1
C _G 茾	≑ C₀
Ŧ	Ŧ

CG=10 pF, CD=8 pF

DC CHARACTERISTICS


 $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ Ta} = -20 \text{ to } +70^{\circ}\text{C})$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
	VIH1		0.7 x Vdd		VDD	V	1	
	VIL1		0		0.3 x VDD	V		
Input voltage	VIH2		VDD-0.5		Vdd	V	2	
	VIL2		0		0.5	V		
Input current	Ін	$V_{IN} = 0 V$	2		200	μA	1	
······································	Юн1	Vон = VDD-0.5 V	50			μA	3	
	IOL1	Vol = 0.5 V	250			μA		
	ЮН2	$V_{OH} = V_{DD} - 0.5 V$	50			μA	4	
Output current	Іон20	$V_{OH} = V_{DD} - 0.5 V$	160			μA	5	
	loL2	Vol = 0.5 V	0.5			mA	6	
	Юнз	$V_{OH} = V_{DD} - 0.5 V$	20			μA	7	
-	Юнзр	$V_{OH} = V_{DD} - 0.5 V$	90	1		μA	8	
	ЮЦЗ	Vol = 0.5 V	0.2			mA	7	
<u> </u>	Rc			5	20	kΩ	9	
Output impedance	Rs			10	40	kΩ	10	
·····	V1		2.7		3	V		
Output voltage	V ₂	VDSP = 3.0 V	1.7	2	2.3	V		
	V ₃	No load	0.7	1	1.3	V		
	V4		0		0.3	V		
· · · · · · · · · · · · · · · · · · ·	ЮР	f = 455 kHz, Vod = 3.0 V		160	320		12	
Supply current		VDSP = 3.0 V		15	40	μA	13	
	. Isв	Standby current VDD = 3.0 V		8	20		14	


NOTES :

- 1. Applied to pins P0o-P03, RESET, P1o-P13, P2o-P23, P3o-P32 (during input mode).
- 2. Applied to pins CK1, TEST, OSCIN.
- 3. Applied to pin CK₂.
- 4. Applied to pins P1₀-P1₃, P2₀-P2₂, P3₀-P3₂ (during output mode).
- 5. Applied to pins P2₃, Φ_{OUT} (during output mode).
- 6. Applied to pins P1₀-P1₃, P2₀-P2₃, P3₀-P3₂, Φ_{OUT} (during output mode).
- 7. Applied to pins So-S14 (during data output mode).

- 8. Pins cited in NOTE 7 are applicable with mask option used.
- 9. Applied to pins H1-H4.
- 10. Applied to pins S₀-S₃₁ (in LCD output mode).
- 11. Applied to pins H1-H4, S0-S31 (in LCD output mode).
- 12. No load condition.
- 13. No load condition when bleeder resistance is ON, $V_{\text{DSP}} = 3.0$ V, during 32.768 kHz crystal oscillation.
- 14. No load condition when bleeder resistance is OFF, during 32.768 kHz crystal oscillation.

SYSTEM CONFIGURATION EXAMPLE

Singlechip LH7xxxx '790 '789 '791 SMxxxx 'K series MCU Microcontroller MPU Microprocessor ARM Advanced RISC Machines Databank LCD Controller LCD Driver Controllers Processors Portable Low Power Low Voltage High Performance Power curve MIPS MIPS/Watt Execution Cycle Multiplier High Speed Compact Handheld System on Chip System Integration Chip Integration Integration Superchip Standard Cell Core Core based IC VHDL Verilog Synthesis Chip on Board COB Chip on Flex COF Device on Board DOB Power Supply Controller Handy Products Development Tools Board Support Software Tools Tools 2.10 Software Support Emulators Evaluation Boards ICE In-Circuit Emulators ROM ICE SME Series Programmable User Configurable RTOS Real Time Operating Systems Third Party Support Software Hardware Yokogawa Digital Cosmic Compiler C Language C Like Assembler Linker Debugger Debug A/D D/A DAC Analog Digital 10-bit 4-bit 8-bit 16-bit 32-bit Address bus Data Bus