DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a di-vide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to $\overline{\mathrm{CP}}$) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2-input gated Master Reset (Clear), and the LS90 also has a 2 -input gated Master Set (Preset 9).

- Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES

		,	LOW
CP_{0}	Clock (Active LOW going edge) Input to $\div 2$ Section	0.5 U.L.	1.5 U.L.
$\overline{\mathrm{CP}}_{1}$	Clock (Active LOW going edge) Input to $\div 5$ Section (LS90), $\div 6$ Section (LS92)	0.5 U.L.	2.0 U.L.
CP_{1}	Clock (Active LOW going edge) Input to $\div 8$ Section (LS93)	0.5 U.L.	1.0 U.L.
$\mathrm{MR}_{1}, \mathrm{MR}_{2}$	Master Reset (Clear) Inputs	0.5 U.L.	0.25 U.L.
$\mathrm{MS}_{1}, \mathrm{MS}_{2}$	Master Set (Preset-9, LS90) Inputs	0.5 U.L.	0.25 U.L.
Q_{0}	Output from $\div 2$ Section (Notes b \& c)	10 U.L.	5 (2.5) U.L.
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	Outputs from $\div 5$ (LS90), $\div 6$ (LS92), $\div 8$ (LS93) Sections (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74) Temperature Ranges.
c. The Q_{0} Outputs are guaranteed to drive the full fan-out plus the $\overline{\mathrm{CP}}_{1}$ input of the device.
d. To insure proper operation the rise (t_{r}) and fall time (t_{f}) of the clock must be less than 100 ns .

LOGIC SYMBOL

LS92

SN54/74LS90 SN54/74LS92 SN54/74LS93

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

LOW POWER SCHOTTKY

N SUFFIX
PLASTIC CASE 646-06

D SUFFIX
SOIC
CASE 751A-02

ORDERING INFORMATION

```
SN54LSXXJ Ceramic
SN74LSXXN Plastic
SN74LSXXD SOIC
```

LS93

LOGIC DIAGRAM	CONNECTION DIAGRAM DIP (TOP VIEW) NC $=$ NO INTERNAL CONNECTION NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.
LOGIC DIAGRAM LS92	CONNECTION DIAGRAM DIP (TOP VIEW) NC = NO INTERNAL CONNECTION NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.
LOGIC DIAGRAM LS93	CONNECTION DIAGRAM DIP (TOP VIEW) NC = NO INTERNAL CONNECTION NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION

The LS90, LS92, and LS93 are 4-bit ripple type Decade, Divide-By-Twelve, and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS90), divide-by-six (LS92), or divide-by-eight (LS93) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q0 output of each device is designed and specified to drive the rated fan-out plus the CP_{1} input of the device.

A gated AND asynchronous Master Reset $\left(\mathrm{MR}_{1} \bullet \mathrm{MR}_{2}\right)$ is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set $\left(\mathrm{MS}_{1} \cdot \mathrm{MS}_{2}\right)$ is provided on the LS90 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

LS90

A. BCD Decade (8421) Counter - The $\overline{C P}_{1}$ input must be externally connected to the Q_{0} output. The CP_{0} input receives the incoming count and a BCD count sequence is produced.
B. Symmetrical Bi-quinary Divide-By-Ten Counter - The Q3 output must be externally connected to the $C P_{0}$ input. The input count is then applied to the CP_{1} input and a divide-byten square wave is obtained at output Q_{0}.
C. Divide-By-Two and Divide-By-Five Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function (CP_{0} as the input and Q_{0} as the output). The CP_{1} input is used to obtain binary divide-by-five operation at the Q_{3} output.

LS92

A. Modulo 12, Divide-By-Twelve Counter - The $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the Q_{0} output. The CP_{0} input receives the incoming count and Q_{3} produces a symmetrical divide-by-twelve square wave output.
B. Divide-By-Two and Divide-By-Six Counter -No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The CP_{1} input is used to obtain divide-by-three operation at the Q_{1} and Q_{2} outputs and divide-by-six operation at the Q_{3} output.

LS93

A. 4-Bit Ripple Counter - The output Q_{0} must be externally connected to input CP_{1}. The input count pulses are applied to input CP_{0}. Simultaneous divisions of $2,4,8$, and 16 are performed at the Q_{0}, Q_{1}, Q_{2}, and Q_{3} outputs as shown in the truth table.
B. 3-Bit Ripple Counter- The input count pulses are applied to input CP_{1}. Simultaneous frequency divisions of 2,4 , and 8 are available at the Q_{1}, Q_{2}, and Q_{3} outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

LS93 TRUTH TABLE

cOUNT	OUTPUT			
	Q $_{\mathbf{0}}$	Q $_{\mathbf{1}}$	Q $_{\mathbf{2}}$	Q $_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

NOTE: Output Q_{0} is connected to Input CP_{1}.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$	$-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	54	2.5	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table	
		74	2.7	3.5		V		
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL or or }} \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$
		74		0.35	0.5	V	$\mathrm{IOL}=8.0 \mathrm{~mA}$	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
IIL					$\begin{aligned} & -0.4 \\ & -2.4 \\ & -3.2 \\ & -1.6 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	
Ios	Short Circuit Current (Note 1)		-20		-100	mA	$V_{C C}=M A X$	
Icc	Power Supply Current				15	mA	$V_{C C}=$ MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

SN54/74LS90 • SN54/74LS92•SN54/74LS93

AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)$

Symbol	Parameter	Limits									Unit
		LS90			LS92			LS93			
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {MAX }}$	CP_{0} Input Clock Frequency	32			32			32			MHz
$\mathrm{f}_{\text {MAX }}$	CP_{1} Input Clock Frequency	16			16			16			MHz
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP_{0} Input to Q_{0} Output		$\begin{aligned} & \hline 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 18 \end{aligned}$		$\begin{aligned} & \hline 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 18 \end{aligned}$		$\begin{aligned} & \hline 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 18 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	CP_{0} Input to Q_{3} Output		$\begin{aligned} & 32 \\ & 34 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \end{aligned}$		$\begin{aligned} & 32 \\ & 34 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \end{aligned}$		$\begin{aligned} & 46 \\ & 46 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	CP_{1} Input to Q_{1} Output		$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 21 \end{aligned}$		10 14	$\begin{aligned} & \hline 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 21 \end{aligned}$	ns
tpLH tpHL	CP_{1} Input to Q_{2} Output		$\begin{aligned} & \hline 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & \hline 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$	ns
tpLH tPHL	CP_{1} Input to Q_{3} Output		$\begin{aligned} & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 34 \\ & 34 \end{aligned}$	51	ns
tPLH	MS Input to Q_{0} and Q_{3} Outputs		20	30							ns
tPHL	MS Input to Q_{1} and Q_{2} Outputs		26	40							ns
tPHL	MR Input to Any Output		26	40		26	40		26	40	ns

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits						Unit
		LS90		LS92		LS93		
		Min	Max	Min	Max	Min	Max	
tw	CP_{0} Pulse Width	15		15		15		ns
tw	CP_{1} Pulse Width	30		30		30		ns
tw	MS Pulse Width	15						ns
tw	MR Pulse Width	15		15		15		ns
trec	Recovery Time MR to $\overline{\mathrm{CP}}$	25		25		25		ns

RECOVERY TIME ($\mathrm{t}_{\text {rec }}$) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs

AC WAVEFORMS

Figure 1
*The number of Clock Pulses required between the tPHL and tPLH measurements can be determined from the appropriate Truth Tables.

Figure 2

Figure 3

