

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to CP) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2-input gated Master Reset (Clear), and the LS90 also has a 2-input gated Master Set (Preset 9).

- Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES LOADING (Note a)

		HIGH	LOW
CP ₀	Clock (Active LOW going edge) Input to ÷2 Section	0.5 U.L.	1.5 U.L.
CP ₁	Clock (Active LOW going edge) Input to ÷5 Section (LS90), ÷6 Section (LS92)	0.5 U.L.	2.0 U.L.
CP ₁	Clock (Active LOW going edge) Input to ÷8 Section (LS93)	0.5 U.L.	1.0 U.L.
MR_1, MR_2	Master Reset (Clear) Inputs	0.5 U.L.	0.25 U.L.
MS_1, MS_2	Master Set (Preset-9, LS90) Inputs	0.5 U.L.	0.25 U.L.
Q_0	Output from ÷2 Section (Notes b & c)	10 U.L.	5 (2.5) U.L.
Q ₁ , Q ₂ , Q ₃	Outputs from ÷5 (LS90), ÷6 (LS92), ÷8 (LS93) Sections (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:

- a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74)
 Temperature Ranges.
- c. The Q₀ Outputs are guaranteed to drive the full fan-out plus the CP₁ input of the device.
- d. To insure proper operation the rise (t_f) and fall time (t_f) of the clock must be less than 100 ns.

SN54/74LS90 SN54/74LS92 SN54/74LS93

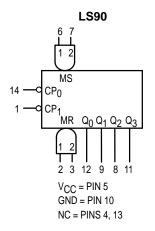
DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

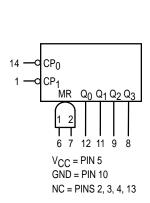
LOW POWER SCHOTTKY

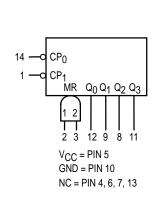
J SUFFIX CERAMIC CASE 632-08

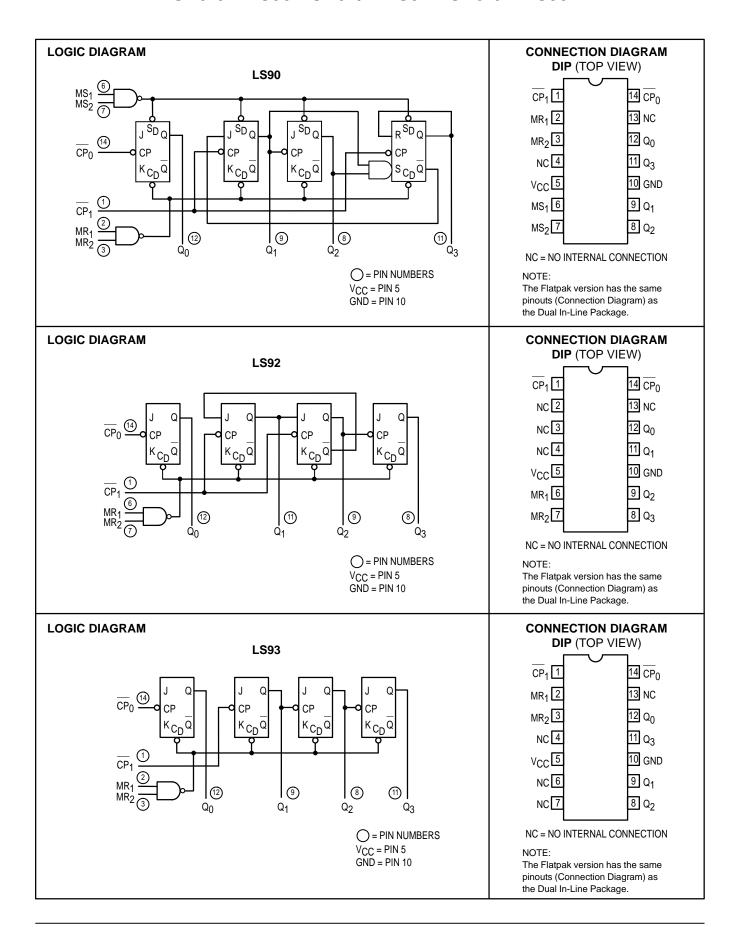
N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02


ORDERING INFORMATION


SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC


LS93


LOGIC SYMBOL

LS92

FUNCTIONAL DESCRIPTION

The LS90, LS92, and LS93 are 4-bit ripple type Decade, Divide-By-Twelve, and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS90), divide-by-six (LS92), or divide-by-eight (LS93) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q₀ output of each device is <u>de</u>signed and specified to drive the rated fan-out plus the CP₁ input of the device.

A gated AND asynchronous Master Reset (MR₁ \bullet MR₂) is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set (MS₁ \bullet MS₂) is provided on the LS90 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

LS90

- A. BCD Decade (8421) Counter The CP₁ input must be externally connected to the Q₀ output. The CP₀ input receives the incoming count and a BCD count sequence is produced.
- B. Symmetrical Bi-quinary Divide-By-Ten Counter The Q₃ output must be externally connected to the CP₀ input. The input count is then applied to the CP₁ input and a divide-byten square wave is obtained at output Q₀.

C. Divide-By-Two and Divide-By-Five Counter — No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function (CP $_0$ as the input and Q $_0$ as the output). The CP $_1$ input is used to obtain binary divide-by-five operation at the Q $_3$ output.

LS92

- A. Modulo 12, Divide-By-Twelve Counter The CP₁ input must be externally connected to the Q₀ output. The CP₀ input receives the incoming count and Q₃ produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter —No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The CP₁ input is used to obtain divide-by-three operation at the Q₁ and Q₂ outputs and divide-by-six operation at the Q₃ output.

LS93

- A. 4-Bit Ripple Counter The output Q₀ must be externally connected to input CP₁. The input count pulses are applied to input CP₀. Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q₀, Q₁, Q₂, and Q₃ outputs as shown in the truth table.
- B. 3-Bit Ripple Counter— The input count pulses are applied to input CP_1 . Simultaneous frequency divisions of 2, 4, and 8 are available at the Q_1 , Q_2 , and Q_3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

LS90
MODE SELECTION

RESET/SET INPUTS				C	UTP	UTS			
MR ₁	MR ₂	MS ₁	MS ₂	ე0	Q ₁	Q_2	Q_3		
Н	Н	L	Х	L	L	L	Г		
Н	Н	Χ	L	L	L	L	L		
Х	Х	Н	Н	Н	L	L	Н		
L	Х	L	X		Cou	ınt			
Х	L	Х	L	Count					
L	Х	Χ	L	Count					
X	L	L	X		Cou	ınt			

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

LS92 AND LS93 MODE SELECTION

	SET UTS	OUTPUTS							
MR ₁	MR ₂	Q ₀	Q ₀ Q ₁ Q ₂						
Н	Н	L	L	L	L				
L	Н		Count						
Н	L		Count						
L	L		Co	unt					

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

LS90 BCD COUNT SEQUENCE

COLINIT		OUTPUT							
COUNT	Q ₀	Q ₁	Q_2	Q_3					
0	L	L	L	L					
1	Н	L	L	L					
2	L	Н	L	L					
3	Н	Н	L	L					
4	L	L	Н	L					
5	Н	L	Н	L					
6	L	Н	Н	L					
7	Н	Н	Н	L					
8	L	L	L	Н					
9	Н	L	L	Н					

 $\underline{\text{NO}}\text{TE}\text{:}$ Output Q_0 is connected to Input CP_1 for BCD count.

LS92 TRUTH TABLE

COUNT		OUTPUT							
COUNT	Q_0	Q ₁	Q ₂	Q_3					
0	L	L	L	L					
1	Н	L	L	L					
2	L	Н	L	L					
3	Н	Н	L	L					
4	L	L	Н	L					
5	Н	L	Н	L					
6	L	L	L	Н					
7	Н	L	L	Н					
8	L	Н	L	Н					
9	Н	Н	L	Н					
10	L	L	Н	Н					
11	Н	L	Н	Н					

 $\underline{\text{NO}}\text{TE:}$ Output Q_0 is connected to Input $\mathsf{CP}_1.$

LS93 TRUTH TABLE

COUNT		OUTPUT							
COUNT	Q ₀	Q_1	Q_2	Q_3					
0	L	L	L	L					
1	Н	L	L	L					
2	L	Н	L	L					
3	Н	Н	L	L					
4	L	L	Н	L L L					
5	Н	L	Н	L					
6	L	Н	Н	L					
7	Н	Н	Η	L					
8	L	L	L	Н					
9	Н	L	L	Н					
10	L	Н	L	Н					
11	Н	Н	L	Н					
12	L	L	Н	Н					
13	Н	L	Н	Н					
14	L	Н	Н	Н					
15	Н	Н	Н	Н					

 $\underline{\text{NO}}\text{TE:}$ Output Q_0 is connected to Input $\mathsf{CP}_1.$

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits							
Symbol	Parameter		Min	Тур	Max	Unit	Test Co	onditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	HIGH Voltage for	
V	Input LOW Voltage				0.7	V	Guaranteed Input	LOW Voltage for	
V _{IL}					0.8	V	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	–18 mA	
Vou	Output HIGH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH} :	= MAX, V _{IN} = V _{IH}	
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Ta	ble	
Voi	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}	
VOL	Output LOVV Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
1	Input HIGH Current				20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
IH	Input nigh Current				0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V	
I _{IL}	Input LOW Current MS, MR CP0 CP1 (LS90, LS92) CP1 (LS93)				-0.4 -2.4 -3.2 -1.6	mA	V _{CC} = MAX, V _{IN}	= 0.4 V	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
Icc	Power Supply Current				15	mA	V _{CC} = MAX	_	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0$ V, $C_L = 15$ pF)

		Limits									
			LS90		LS92			LS93			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	CP ₀ Input Clock Frequency	32			32			32			MHz
fMAX	CP ₁ Input Clock Frequency	16			16			16			MHz
^t PLH ^t PHL	Propagation Delay, CP ₀ Input to Q ₀ Output		10 12	16 18		10 12	16 18		10 12	16 18	ns
tPLH tPHL	CP ₀ Input to Q ₃ Output		32 34	48 50		32 34	48 50		46 46	70 70	ns
^t PLH ^t PHL	CP ₁ Input to Q ₁ Output		10 14	16 21		10 14	16 21		10 14	16 21	ns
tPLH tPHL	CP ₁ Input to Q ₂ Output		21 23	32 35		10 14	16 21		21 23	32 35	ns
^t PLH ^t PHL	CP ₁ Input to Q ₃ Output		21 23	32 35		21 23	32 35		34 34	51 51	ns
tPLH	MS Input to Q ₀ and Q ₃ Outputs		20	30							ns
^t PHL	MS Input to Q ₁ and Q ₂ Outputs		26	40							ns
^t PHL	MR Input to Any Output		26	40		26	40		26	40	ns

AC SETUP REQUIREMENTS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits						
		LS	LS90		LS92		LS93		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	
t _W	CP ₀ Pulse Width	15		15		15		ns	
t _W	CP ₁ Pulse Width	30		30		30		ns	
t _W	MS Pulse Width	15						ns	
t _W	MR Pulse Width	15		15		15		ns	
t _{rec}	Recovery Time MR to CP	25		25		25		ns	

RECOVERY TIME (trec) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs

AC WAVEFORMS

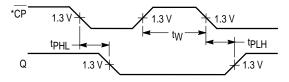
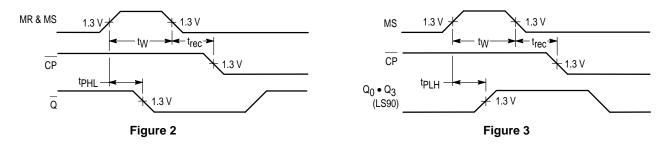



Figure 1

^{*}The number of Clock Pulses required between the tpHL and tpLH measurements can be determined from the appropriate Truth Tables.

