

Product Description

Stanford Microdevices' SNA-486 is a high performance Gallium Arsenide Heterojunction Bipolar Transistor MMIC Amplifier. A Darlington configuration is utilized for broadband performance up to 6.5 GHz. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Typical IP3 at 850 MHz with 65mA is 32.3 dBm.

These unconditionally stable amplifiers provide 13.6 dB of gain and 17.5 dBm of 1dB compressed power and require only a single positive voltage supply. Only 2 DC-blocking capacitors, a bias resistor and an optional inductor are needed for operation. This MMIC is an ideal choice for wireless applications such as cellular, PCS, CDPD, wireless data and SONET.

SNA-486 DC-6.5 GHz, Cascadable **GaAs HBT MMIC Amplifier**

NGA-486 Recommended for New Designs

Product Features

- High Output IP3: 32.3 dBm @ 850 MHz
- Cascadable 50 Ohm Gain Block
- Patented GaAs HBT Technology
- Operates From Single Supply

Applications

• Cellular, PCS, CDPD, Wireless Data, SONET

Electrical Specifications

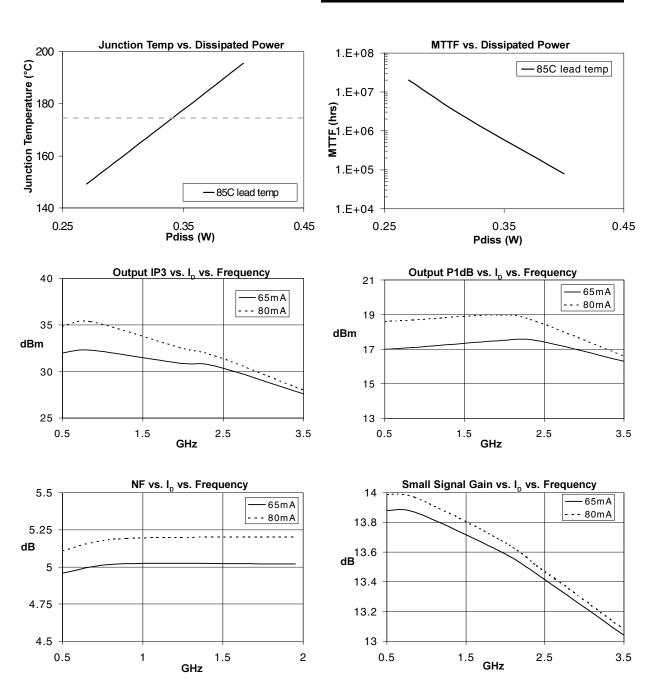
	Liectrical opecifications					
Symbol	Parameters: Test Conditions: $Z_0 = 50$ Ohms, $I_D = 65$ mA, $T = 25$ °C		Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	f = 850 MHz f = 1950 MHz f = 2400 MHz	dBm dBm dBm		17.1 17.5 17.5	
IP ₃	Third Order Intercept Point Power out per tone = 0 dBm	f = 850 MHz f = 1950 MHz f = 2400 MHz	dBm dBm dBm		32.3 30.9 30.6	
S ₂₁	Small Signal Gain	f = 850 MHz f = 1950 MHz f = 2400 MHz	dB dB dB	12.5	13.9 13.6 13.5	
Bandwidth	(Determined by S ₁₁ , S ₂₂ Values)		MHz		6500	
S ₁₁	Input VSWR	f = DC-6500 MHz	-		1.7:1	
S ₂₂	Output VSWR	f = DC-6500 MHz	-		1.6:1	
S ₁₂	Reverse Isolation	f = 850 MHz f = 1950 MHz f = 2400 MHz	dB dB dB		18.3 18.2 18.2	
NF	Noise Figure, Z _s = 50 Ohms	f = 1950 MHz	dB	·	5.0	·
V _D	Device Voltage		V	4.5	5.0	5.5
Rth,j-I	Thermal Resistance (junction - lead)		° C/W		254	·

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

Absolute Maximum Ratings

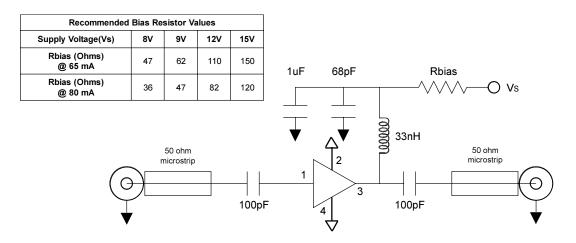
Operation of this device above any one of these parameters may cause permanent damage.

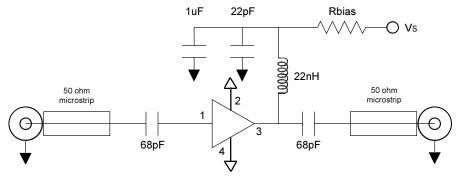

Bias Conditions should also satisfy the following expression: I_DV_D (max) < $(T_J - T_{OP})/Rth$, j-l

Parameter	Value	Unit
Supply Current	110	mA
Operating Temperature	-40 to +85	С
Maximum Input Power	16	dBm
Storage Temperature Range	-40 to +150	С
Operating Junction Temperature	+175	С

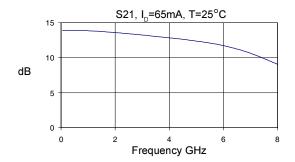
	Typical		Test Condition
Parameter	25°C	Unit	$(I_D = 65 \text{ mA}, \text{ unless otherwise noted})$
500 MHz			
Gain	13.9	dB	
Noise Figure	5.0	dB	$Z_s = 50 \text{ Ohms}$
Output IP3	32.0	dBm	Tone spacing = 1 MHz, Pout per tone = 0 dBm
Output P1dB	17.0	dBm	
Input Return Loss	11.6	dB	
Isolation	18.3	dB	
850 MHz			
Gain	13.9	dB	
Noise Figure	5.0	dB	$Z_s = 50 \text{ Ohms}$
Output IP3	32.3	dBm	Tone spacing = 1 MHz, Pout per tone = 0 dBm
Output P1dB	17.1	dBm	
Input Return Loss	12.2	dB	
Isolation	18.3	dB	
1950 MHz			
Gain	13.6	dB	
Noise Figure	5.0	dB	$Z_s = 50 \text{ Ohms}$
Output IP3	30.9	dBm	Tone spacing = 1 MHz, Pout per tone = 0 dBm
Output P1dB	17.5	dBm	
Input Return Loss	11.7	dB	
Isolation	18.2	dB	
2400 MHz			
Gain	13.5	dB	
Output IP3	30.6	dBm	Tone spacing = 1 MHz, Pout per tone = 0 dBm
Output P1dB	17.5	dBm	
Input Return Loss	11.5	dB	
Isolation	18.2	dB	

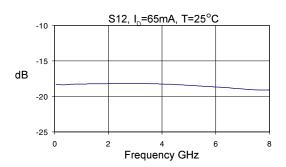
*NOTE: While the SNA-486 can be operated at different bias currents, 65 mA is the recommended bias for lower junction temperature and longer life. This reflects typical operating conditions which we have found to be an optimal balance between high IP3 and MTTF. In general, MTTF is improved to more than 100,000 hours when biasing at 65 mA and operating up to 85°C ambient temperature.

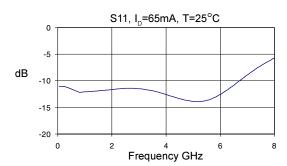


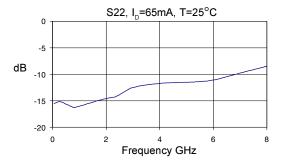


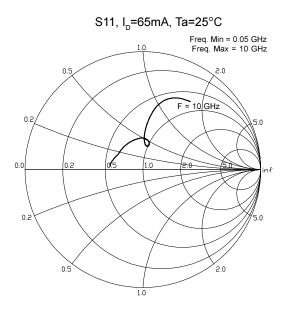
Pin #	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2	GND	Connection to ground. Use via holes for best performance to reduce lead inductance. Place vias as close to ground leads as possible.
3	RF OUT/Vcc	RF output and bias pin. Bias should be supplied to this pin through an external series resistor and RF choke inductor. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see application schematic). The supply side of the bias network should be well bypassed.
4	GND	Same as Pin 2.

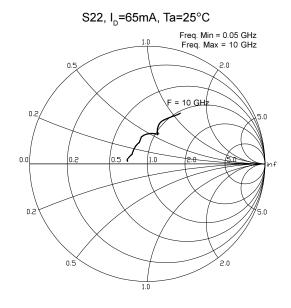

Application Schematic for Operation at 850 MHz

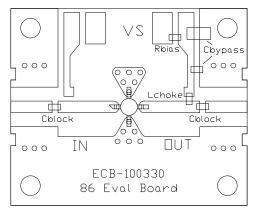



Application Schematic for Operation at 1950 MHz





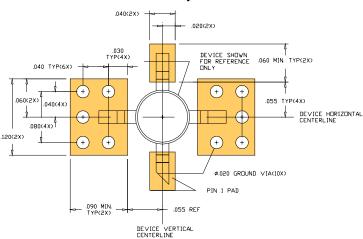




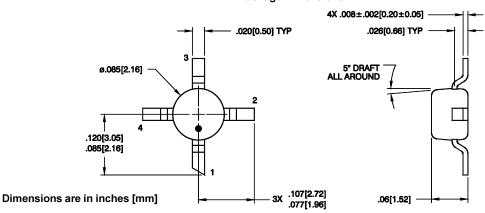
Part Number Ordering Information

Part Number	Reel Size	Devices/Reel	
SNA-486	7"	1000	

Caution ESD Sensitive:


Appropriate precautions in handling, packaging and testing devices must be observed.

Part Symbolization


The part will be symbolized with an "S4" designator on the top surface of the package.

Evaluation Board Layout

PCB Pad Layout

Package Dimensions

EDS-101396 Rev A