
SP203

General Description

Silicon VDMOS and LDMOS transistors designed specifically for broadband RF applications. Suitable for Militry Radios, Cellular and Paging Amplifier Base Stations, Broadcast FM/AM, MRI, Laser Driver and others.

"Polyfet" process features low feedback and output capacitances resulting in high F transistors with high input impedance and high efficiency.

SILICON GATE ENHANCEMENT MODE
RF POWER VDMOS TRANSISTOR

12.0 Watts Single EndedPackage Style AP

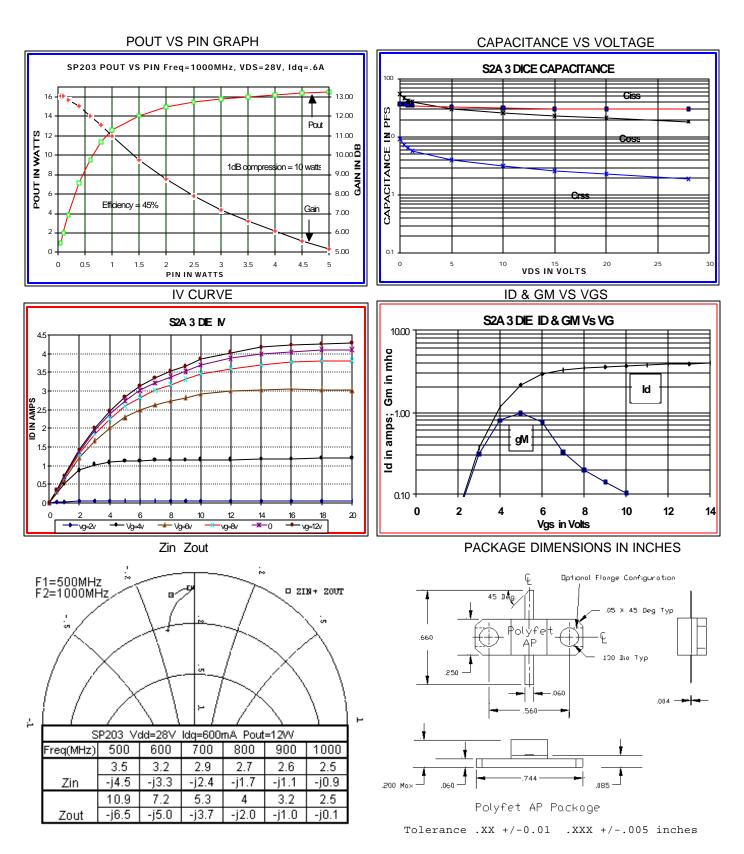
HIGH EFFICIENCY, LINEAR HIGH GAIN, LOW NOISE

ABSOLUTE MAXIMUM RATINGS (T = 25 °C)

Total Device Dissipation	Junction to Case Thermal Resistance	Maximum Junction Temperature	Storage Temperature	DC Drain Current	Drain to Gate Voltage	Drain to Source Voltage	Gate to Source Voltage
40 Watts	5.00 °C/W	200 °C	-65 °C to 150 °C	2.4 A	70V	70 V	20 V

RF CHARACTERISTICS (12.0 WATTS OUTPUT)

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I	Gps	Common Source Power Gain	10			dB	Idq = 0.60 A, Vds = 28.0 V, F = 1,000 MHz
	η	Drain Efficiency		45		%	Idq = 0.60 A, $Vds = 28.0 V$, $F = 1,000 MHz$
I	VSWR	Load Mismatch Tolerance			20:1	Relative	Idq = 0.60 A, $Vds = 28.0$ V, $F = 1,000$ MHz


ELECTRICAL CHARACTERISTICS (EACH SIDE)

SYMBOL	SYMBOL PARAMETER		TYP	MAX	UNITS	TEST CONDITIONS
Bvdss	Drain Breakdown Voltage	65			V	lds = 30.00 mA, Vgs = 0V
Idss	Zero Bias Drain Current			0.6	mA	Vds = 28.0 V, Vgs = 0V
Igss	Gate Leakage Current			1	uA	Vds = 0V Vgs = 30V
Vgs	Gate Bias for Drain Current	1		7	V	lds = 0.06 A, Vgs = Vds
gM	Forward Transconductance		0.9		Mho	Vds = 10V, Vgs = 5V
Rdson	Saturation Resistance		1.30		Ohm	Vgs = 20V, Ids = 1.50 A
Idsat	Saturation Current		4.20		Amp	Vgs = 20V, Vds = 10V
Ciss	Common Source Input Capacitance		30.0		pF	Vds = 28.0 Vgs = 0V, F = 1 MHz
Crss	Common Source Feedback Capacitance		1.8		pF	Vds = 28.0 Vgs = 0V, F = 1 MHz
Coss	Common Source Output Capacitance		18.0		pF	Vds = 28.0 Vgs = 0V, F = 1 MHz

POLYFET RF DEVICES

REVISION 03/28/2001

SP203

POLYFET RF DEVICES