Electronic Protection Array for ESD and Over-Voltage Protection

The SP721 is an array of SCR/Diode bipolar structures for ESD and over-voltage protection to sensitive input circuits. The SP721 has 2 protection SCR/Diode device structures per input. There are a total of 6 available inputs that can be used to protect $\mathbf{Y p}$ to 6 external signal or bus lines. Overvoltage protection is from the \mathbb{N} (Pins 1-3 and Pins 5-7) to $\mathrm{V}+$ or V .

The SCR structures are designed for fast triggering at a threshold of one $+\mathrm{V}_{\mathrm{BE}}$ diode threshold above $\mathrm{V}+(\mathrm{Pin} 8)$ or a $-V_{B E}$ diode threshold below V (Pin 4). From an IN input, a clamp to $V+$ is activated if a transient pulse causes the input to be increased to a voltage level greater than one VBE above $V+$. A similar clamp to V - is activated if a negative pulse, one VBE less than $V-$, is applied to an $I \mathbb{N}$ input. Standard ESD Human Body Model (HBM) Cepability is:

HBM STANDARD	MODE	R	C	ESD (V)
IEC 1000-4-2	Alr	330Ω	150 pF	$>15 \mathrm{KV}$
	Direct	330Ω	150 pF	$>4 \mathrm{KV}$
	Direct, Dual Pins	330Ω	150 pF	$>8 \mathrm{KV}$
MIL-STD-3015.7	Direct, In-Clicult	$1.5 \mathrm{k} \Omega$	100 pF	$>15 \mathrm{KV}$

Refer to Figure 1 and Table 1 for further detail. Refer to Application Notes AN9304 and AN9612 for additional information.

Ordering Information

PART NO.	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
SP721AP	-40 to 106	8 Ld PDIP	E8.3
SP721AB	-40 to 106	8 Ld SOIC	M8.15
SP721ABT	-40 to 106	8 Ld SOIC Tape and Reel	M8.15

Pinout

Features

- ESD Interface Capability for HBM Standards
- MIL STD 3015.7
- IEC 1000-4-2, Direct Discharge, Single Input 4kV (Level 2)
Two Inputs in Parallel 8kV (Level 4)
- IEC 1000-4-2, Air Discharge 15kV (Level 4)
- High Peak Current Capability
- IEC 1000-4-5 ($8 / 20 \mu \mathrm{~s}$) . $\mathbf{~} 3 \mathrm{BA}$
- Single Pulse, $100 \mu \mathrm{~s}$ Pulse Width $\pm 2 \mathrm{~A}$
- Single Pulse, $4 \mu \mathrm{~s}$ Pulse Width $\pm 5 \mathrm{~A}$
- Designed to Provide Over-Voltage Protection
- Single-Ended Voltage Range to +30 V
- Differential Voltage Range to $\pm 15 \mathrm{~V}$
- Fast Switching . 2ns Rise Time
- Low Input Leakages InA at $25^{\circ} \mathrm{C}$ Typical
- Low Input Capacitance 3pF Typical
- An Array of 6 SCR/Diode Pairs
- Operating Temperature Range. $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$

Applications

- Microprocessor/'Logic Input Protection
- Data Bus Protection
- Analog Device Input Protection
- Voltage Clamp

Functional Block Diagram

Absolute Maximum Ratings
Conllnusus Supply Voltege, ($\mathrm{V}+$) - (V) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots+35 \mathrm{~F}$
Forward Peak Current, $I_{\text {IN }}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\text {IN }}$ b GND

ESD Ratings and Cepatillity (Figure 1, Tatle 1)
Load Durrp and Reverse Battery (Nolem_{2})

CAUTION: Strasses above those Fisted in "Absolite Maximum Ratings" may cause peomanant damage to the dewice. This is a strass anfy rating and operation af the device at these ar any other conaitions above those indicated in the operationalsections of this specification is not impliad.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluallon PC board in tree air.

Electrical Specifications $T_{A}-4^{\circ} \mathrm{C}$ to $106^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{\prime}}=0.5 \mathrm{~V}$ CC. Unless Otherwse Speaned

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Operaling voltage Range, $\mathrm{V}_{\text {SUPPLY }}-[(\mathrm{V}+)-(\mathrm{V}-)]$	$\mathrm{v}_{\text {SUPPL }}$		-	2 b 30	-	v
Forward Voltage Drop IN to V IN to $\mathrm{V}+$	$V_{\text {FWDL }}$ $\mathrm{V}_{\text {FWDH }}$	$\mathrm{I}_{1 \times-14}$ (Peak Pulse)		$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Imput Leakege Current	1 IN		-20	5	+20	nA
Culescent Supply Current	I duIESCENT		-	50	200	nA
Equivalent SCR ON Threshold		Note 3	-	1.1	-	V
Equivalent SCR ON Ressistance		$\mathrm{V}_{\text {FWD }} / \mathrm{I}_{\text {FWD }}$; Note 3	-	1	-	Ω
Input Cespeiltance	C_{N}		-	3	-	pF
Input Switching Speed	t_{O}		-	2	-	ns

NOTES:
2 In automotive and battery operated systems, the power supply lines should be externally protected for loed dump and reverse bettery. When the V+ and V-Pins are connected to the same supply voltage source as the device or control line under protection, a current limiting resistor shouid be connected in serles between the external supply and the SP721 supply pins to Irrit reverse baltery current to within the rated maxdmum limilts. Bypass capacitors of typlcally $0.01 \mu \mathrm{~F}$ or larger from the $\mathrm{V}+$ and V - Pins to ground are recommended.
3. Reter to the Figure 3 graph for deflinitions of equivalent "SCR ON Threshold" and "SCR ON Resistance". These characteristics are given here for thumb-rule information to determine peek current and dissipation under EOS conditions.

ESD Capability

ESD capebility is dspendent on the application and defined test standard. The evaluation results for various test standards and methods based on Figure 1 are shown in Table 1.

For the "Modified' MIL-STD-3015.7 condition that is defined as an "in-circuit" method of ESD testing, the $V+$ and V - pins have a return path to ground and the SP721 ESD capability is typically greater than 15 kV from 100 pF through $1.5 \mathrm{k} \Omega$. By strict definition of MIL-STD-3015.7 using "pin-to-pin" device testing, the ESD voltage capability is greater than 6 kV . The MIL-STD-3015.7 results were determined from AT\&T ESD Test Lab measurements.

The HBM capability to the IEC 1000-4-2 standard is greater than 15 kV for air discharge (Level 4) and greater than 4 kV for drect discharge (Level 2). Dual pin capability (2 adjacent pins in parallel) is well in excess of 8 kV (Level 4).
For ESD testing of the SP721 to EIAJ IC121 Machine Model (MM) standard, the results are typically better than 1 kV from 200 pF with no series resistance.

TABLE 1. ESD TEST CONDITIONS

STANDARD	TYPE/MODE	RD	$C_{\text {D }}$	$\pm \mathrm{V}_{\mathrm{D}}$
MIL-STD-3015.7	Modilied HBM	$1.5 \mathrm{k} \Omega$	100 pF	15 KV
	Stanclard HEM	$1.5 \mathrm{k} \Omega$	100 pF	6KV
IEC 1000-4-2	HRM, Alr Discharge	330Ω	150pF	15 KV
	HBM, Direct Discharge	330Ω	150pF	4KV
	HBM, Direct Discharge, Two Parallel Input Pins	330Ω	150pF	8 KV
EIAJ IC121	Machine Model	$0 \mathrm{k} \Omega$	200 pF	1kV

MIL-STD-3015.7: $\mathrm{R}_{1} 1$ to $10 \mathrm{M} \Omega$
FIGURE 1. ELECTROSTATIC DISCHARGE TEST

FIGURE 2. LOW CURRENT SCR FORWARD VOLTAGE DROP CURVE

FIGURE 3. HIGH CURRENT SCR FORWARD VOLTAGE DROP CURVE

FIGURE 4. TYPICAL APPLICATION OF THE SP721 AS AN INPUT CLAMP FOR OVER-VOLTAGE, GREATER THAN $1 V_{B E}$ ABOVE V+ OR LESS THAN -1 $\mathrm{V}_{\text {BE }}$ BELOW V -

Peak Transient Current Capability of the SP721

The peak transient current capability rises sharply as the width of the current pulse narrows. Destructive testing was done to fully evaluate the SP721's ability to withstand a wide range of peak current pulses vs time. The circuit used to generate current pulses is shown in Figure 5.

The test circuit of Figure 5 is shown with a positive pulse input. For a negative pulse input, the (-) current pulse input goes to an SP721 'IN' input pin and the (+) current pulse input goes to the SP721 V-pin. The V+ to V- supply of the SP721 must be allowed to float. (i.e., It is not tied to the ground reference of the current pulse generator.) Figure 6 shows the point of overstress as defined by increased leakage in excess of the data sheet published limits.

The maximum peak input current capability is dependent on the ambient temperature, improving as the temperature is reduced. Peak current curves are shown for ambient temperatures of $25^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$ and a 15 V power supply condition. The safe operating range of the transient peak current should be limited to no more than 75% of the measured overstress level for any given pulse width as shown in the curves of Figure 6.

Note that adjacent input pins of the SP721 may be paralleled to improve current (and ESD) capability. The sustained peak current capability is increased to nearly twice that of a single pin.

$R_{1} \sim 10 \Omega$ TYPICAL
V_{X} ADJ. 10V/A TYPICAL
C1 ~ $100 \mu \mathrm{~F}$

FIGURE 5. TYPICAL SP721 PEAK CURRENT TEST CIRCUIT WITH A VARIABLE PULSE WIDTH INPUT

FIGURE 6. SP721 TYPICAL SINGLE PULSE PEAK CURRENT CURVES SHOWING THE MEASURED POINT OF OVERSTRESS IN AMPERES vs PULSE WIDTH TIME IN MILLISECONDS

Dual-In-Line Plastic Packages (PDIP)

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8,10
C	0.008	0.014	0.204	0.355	-
D	0.355	0.400	9.01	10.16	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.10	BSC	2.5	BSC	-
$\mathrm{e}_{\text {A }}$	0.30	BSC	7.6	BSC	6
e_{B}	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	8		8		9

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. "L" is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M8.15 (JEDEC MS-012-AA ISSUE C) 8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS								
	MIN	MAX	MIN	MAX							
A	0.0532	0.0688	1.35	1.75	-						
A1	0.0040	0.0098	0.10	0.25	-						
B	0.013	0.020	0.33	0.51	9						
C	0.0075	0.0098	0.19	0.25	-						
D	0.1890	0.1968	4.80	5.00	3						
E	0.1497	0.1574	3.80	4.00	4						
e	0.050	BSC	1.27	BSC	-						
H	0.2284	0.2440	5.80	6.20	-						
h	0.0099	0.0196	0.25	0.50	5						
L	0.016	0.050	0.40	1.27	6						
N	8						8				
α	0°	8^{0}	0°	8^{0}	-						

Rev. 0 12/93

