LOW VOLTAGE 0.5 MAX DUAL SPDT SWITCH WITH BREAK BEFORE MAKE FEATURE

- HIGH SPEED:

$$
\mathrm{t}_{\mathrm{PD}}=0.3 \mathrm{~ns} \text { (TYP.) at } \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}
$$

$$
\mathrm{t}_{\mathrm{PD}}=0.4 \mathrm{~ns} \text { (TYP.) at } \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}
$$

- ULTRA LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- LOW "ON" RESISTANCE $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$:
$\mathrm{R}_{\mathrm{ON}}=0.5 \Omega\left(\mathrm{MAX} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=2.7$
$\mathrm{R}_{\mathrm{ON}}=0.8 \Omega\left(\mathrm{MAX} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
$\mathrm{R}_{\mathrm{ON}}=3.0 \Omega\left(\mathrm{MAX} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$
- WIDE OPERATING VOLTAGE RANGE: $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=1.65 \mathrm{~V}$ to 4.3 V SINGLE SUPPLY
- 4.3V TOLERANT AND 1.8 V COMPATIBLE THRESHOLD ON DIGITAL CONTROL INPUT at $\mathrm{V}_{\mathrm{CC}}=2.3$ to 3.0 V
- LATCH-UP PERFORMANCE EXCEEDS 300mA (JESD 17)

DESCRIPTION

The STG3684 is an high-speed CMOS DUAL ANALOG S.P.D.T. (Single Pole Dual Throw) SWITCH or DUAL 2:1 Multiplexer/Demultiplexer Bus Switch fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is designed to operate from 1.65 V to 4.3 V , making this device ideal for portable applications.
It offers very low ON-Resistance ($<0.5 \Omega$) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$. The nIN inputs are provided to control the switches. The switches nS1 are ON (they are

ORDER CODES

PACKAGE	T \& R
QFN	STG3684QTR

connected to common Ports Dn) when the nIN input is held high and OFF (high impedance state exists between the two ports) when nIN is held low; the switches nS2 are ON (they are connected to common Ports Dn) when the nIN input is held low and OFF (high impedance state exists between the two ports) when IN is held high. Additional key features are fast switching speed, Break Before Make Delay Time and Ultra Low Power Consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage. It's available in the commercial temperature range in the QFN package.

PIN CONNECTION

Figure 1: Input Equivalent Circuit

Table 1: Pin Description

QFN PIN N		
1,9	SYMBOL	NAME AND FUNCTION
2,10	1S1 , 2IN	Controls
4,12	1 S2 to 2S2	Independent Chan- nels
3,11	D1, D2	Common Channels
$5,7,8,13,15,16$	NC	Not Connected
6	GND	Ground (0V)
14	V $_{\text {CC }}$	Positive Supply Voltage

Table 2: Truth Table

IN	SWITCH S1	SWITCH S2
H	ON	OFF $\left({ }^{*}\right)$
L	OFF $\left(^{*}\right)$	ON

(*) High Impedance

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to 4.6	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IC}}$	DC Control Input Voltage	-0.5 to 4.6	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IC}	DC Input Diode Current on control pin $\left(\mathrm{V}_{\text {IN }}<0 \mathrm{~V}\right)$	-50	mA
I_{IK}	DC Input Diode Current $\left(\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}\right)$	± 50	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 300	mA
I_{OP}	DC Output Current Peak (pulse at $1 \mathrm{mss}, 10 \%$ duty cycle $)$	± 500	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 100	mA
P_{D}	Power Dissipation at $\mathrm{T}_{\mathrm{a}}=70^{\circ} \mathrm{C}(1)$	1120	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature $(10$ sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
(1) Derate above $70^{\circ} \mathrm{C}$: by $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Table 4: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	1.65 to 4.3	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{CC}	V
V_{IC}	Control Input Voltage	0 to 4.3	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time Control Input	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	0 to 20
		$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 4.3 V	0 to 10
nyyn			

[^0]Table 5: DC Specifications

Symbol	Parameter	Test Conditions		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	1.65-1.95		$0.65 \mathrm{~V}_{\text {CC }}$			$0.65 \mathrm{~V}_{\text {CC }}$		$0.65 \mathrm{~V}_{\text {CC }}$		V
		2.3-2.5		1.4			1.4		1.4		
		2.7-3.0		1.4			1.4		1.4		
		3.3		1.5			1.5		1.5		
		3.6		1.7			1.7		1.7		
		4.3		2.2			2.2		2.2		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	1.65-1.95				0.40		0.40		0.40	V
		2.3-2.5				0.50		0.50		0.50	
		2.7-3.6				0.50		0.50		0.50	
		3.3				0.50		0.50		0.50	
		3.6				0.50		0.50		0.50	
		4.3				1.3		1.3		1.3	
R_{ON}	Switch ON Resistance (1)	4.3	$\begin{gathered} V_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{gathered}$		0.40	0.50		0.50			Ω
		3.0			0.40	0.50		0.60			
		2.7			0.40	0.50		0.60			
		2.3			0.50	0.80		0.80			
		1.8			0.70	3.0		4.0			
		1.65			0.80	3.0		4.0			
$\Delta \mathrm{R}_{\text {ON }}$	ON Resistance Match between channels $(1,2)$	2.7	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{gathered}$		0.06						Ω
$\mathrm{R}_{\text {FLAT }}$	ON Resistance FLATNESS (3)	4.3	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{gathered}$								Ω
		3.0									
		2.7			0.07	0.15		0.15			
		2.3									
		1.65	$\begin{gathered} V_{S}=0.8 \mathrm{~V} \\ I_{S}=100 \mathrm{~mA} \end{gathered}$								
IOFF	OFF State Leakage Current (nSn), (Dn)	4.3	$\mathrm{V}_{\mathrm{S}}=0.3$ or 4 V			± 10		± 100			nA
I_{IN}	Input Leakage Current	0-4.3	$\mathrm{V}_{\mathrm{IN}}=0$ to 4.3 V			± 0.1		± 1			$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current (1)	1.65-4.3	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ \text { GND } \end{gathered}$			± 0.05		± 0.2		± 1	$\mu \mathrm{A}$

Note 1: Guaranteed by design
Note 2: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$.
Note 3: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Table 6: AC Electrical Characteristics ($\left.C_{L}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay	1.65-1.95	$\mathrm{V}_{1}=$ OPEN		0.45						ns
		2.3-2.7			0.40						
		3.0-3.6			0.30						
		3.6-4.3			0.30						
t_{ON}	TURN-ON time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$		70						ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		30	50		60			
		3.0-3.6	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		30	50		60			
		3.6-4.3	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		30	50		60			
$\mathrm{t}_{\text {OFF }}$	TURN-OFF time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$		45						ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		25	30		40			
		3.0-3.6	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		25	30		40			
		3.6-4.3	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		25	30		40			
t_{D}	Break Before Make Time Delay	1.65-1.95	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \end{aligned}$								ns
		2.3-2.7		2	15						
		3.0-3.6		2	15						
		3.6-4.3		2	15						
Q	Charge injection	1.65-1.95	$\begin{gathered} \hline \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \\ \hline \end{gathered}$								pC
		2.3-2.7			200						
		3.0-3.6			200						
		3.6-4.3			200						

Table 7: Analog Switch Characteristics ($\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition		Value							Unit
		$V_{C C}$ (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
OIRR	Off Isolation (1)	1.65-4.3	$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=100 K H z \end{aligned}$		-64						dB
Xtalk	Crosstalk	1.65-4.3	$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=100 K H z \end{aligned}$		-54						dB
THD	Total Harmonic Distortion	2.3-4.3	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}_{\mathrm{PP}} \\ \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ \hline \end{gathered}$		0.03						\%
BW	-3dB Bandwidth	1.65-4.3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		50						MHz
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance				5						
$\mathrm{C}_{\text {Sn }}$	Sn Port Capacitance	3.3	$\mathrm{f}=1 \mathrm{MHz}$		37						pF
C_{D}	D Port Capacitance when Switch is Enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		84						

Note 1: Off Isolation $=20 \log _{10}\left(V_{D} / V_{S}\right), V_{D}=$ output. $V_{S}=$ input at off switch

Figure 2: ON Resistance

Figure 3: OFF Leakage

Figure 4: Bandwidth

Figure 5: Channel To Channel Crosstalk

OFF Isolation

Table 8: Test Circuit

$\mathrm{C}_{\mathrm{L}}=5 / 35 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=50 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
Figure 6: Break Before Make Time Delay

Figure 7: Charge Injection $\left(\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)$

Table 9: Turn On, Turn Off Delay Time

QFN16 (3x3) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	0.80	0.90	1.00	0.032	0.035	0.039
A1		0.02	0.05		0.001	0.002
A3		0.20			0.008	
b	0.18	0.25	0.30	0.007	0.010	0.012
D		3.00			0.118	
D2	1.55	1.70	1.80	0.061	0.067	0.071
E2	1.55	1.70	1.80	0.061	0.067	0.071
e		0.50			0.020	
K		0.20			0.008	
L	0.30	0.40	0.50	0.012	0.016	0.020

Tape \& Reel QFNxx/DFNxx (3x3) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		0.724
T		3.3			0.130	
Ao		3.3			0.043	
Bo		1.1			0.157	
Ko		4			0.315	
Po		8				
P						

Table 10: Revision History

Date	Revision	Description of Changes
18-May-2004	2	Characteristics at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$ Added on Tables 3, 4, 5, 6 and 7.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

[^0]: 1) Truth Table guaranteed: 1.2 V to 4.3 V .
