Thick-Film Hybrid IC
 STK415-140-E - 2-Channel Power Switching Audio Power IC, 120W+120W

Overview

The STK415-140-E is a class H audio power amplifier hybrid IC that features a built-in power supply switching circuit. This IC provides high efficiency audio power amplification by controlling (switching) the supply voltage supplied to the power devices according to the detected level of the input audio signal.

Applications

- Audio power amplifiers.

Features

- Pin-to-pin compatible outputs ranging from 80W to 180 W .
- Can be used to replace the STK416-100 series (3-channel models) and the class-AB series (2, 3-channel models) due to its pin compatibility.
- Pure complementary construction by new Darlington power transistors
- Output load impedance: $\mathrm{R}_{\mathrm{L}}=8 \Omega$ to 4Ω supported
- Using insulated metal substrate that features superlative heat dissipation characteristics that are among the highest in the industry.

Series Models

	STK415-090-E	STK415-100-E	STK415-120-E	STK415-130-E	STK415-140-E
Output 1 (10\%/1kHz)	$80 \mathrm{~W} \times 2$ channels	$90 \mathrm{~W} \times 2$ channels	$120 \mathrm{~W} \times 2$ channels	$150 \mathrm{~W} \times 2$ channels	$180 \mathrm{~W} \times 2$ channels
Output 2 (0.8\%/20Hz to 20kHz)	$50 \mathrm{~W} \times 2$ channels	$60 \mathrm{~W} \times 2$ channels	$80 \mathrm{~W} \times 2$ channels	$100 \mathrm{~W} \times 2$ channels	$120 \mathrm{~W} \times 2$ channels
Max. rated V_{H} (quiescent)	$\pm 60 \mathrm{~V}$	$\pm 65 \mathrm{~V}$	$\pm 73 \mathrm{~V}$	$\pm 80 \mathrm{~V}$	$\pm 80 \mathrm{~V}$
Max. rated V_{L} (quiescent)	$\pm 41 \mathrm{~V}$	$\pm 42 \mathrm{~V}$	$\pm 45 \mathrm{~V}$	$\pm 46 \mathrm{~V}$	$\pm 51 \mathrm{~V}$
Recommended operating $\mathrm{V}_{\mathrm{H}}(8 \Omega)$	$\pm 37 \mathrm{~V}$	$\pm 39 \mathrm{~V}$	$\pm 46 \mathrm{~V}$	$\pm 51 \mathrm{~V}$	$\pm 52 \mathrm{~V}$
Recommended operating $\mathrm{V}_{\mathrm{L}}(8 \Omega)$	$\pm 27 \mathrm{~V}$	$\pm 29 \mathrm{~V}$	$\pm 32 \mathrm{~V}$	$\pm 34 \mathrm{~V}$	$\pm 32 \mathrm{~V}$
Dimensions (excluding pin height)	$64.0 \mathrm{~mm} \times 31.1 \mathrm{~mm} \times 9.0 \mathrm{~mm}$				

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
\square Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Specifications

Absolute maximum ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (excluding rated temperature items), $\mathrm{Tc}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Conditions	Ratings	Unit
V_{H} maximum quiescent supply voltage 1	V_{H} max (1)	When no signal	± 80	V
V_{H} maximum supply voltage 2	V_{H} max (2)	$\mathrm{R}_{\mathrm{L}} \geq 6 \Omega$	± 78	V
V_{H} maximum supply voltage 3	V_{H} max (3)	$\mathrm{R}_{\mathrm{L}} \geq 4 \Omega$	± 60	V
V_{L} maximum quiescent supply voltage 1	$\mathrm{V}_{\mathrm{L}} \max (1)$	When no signal	± 51	V
V_{L} maximum supply voltage 2	$\mathrm{V}_{\mathrm{L}} \max (2)$	$\mathrm{R}_{\mathrm{L}} \geq 6 \Omega$	± 48	V
V_{L} maximum supply voltage 3	$\mathrm{V}_{\mathrm{L}} \max (3)$	$\mathrm{R}_{\mathrm{L}} \geq 4 \Omega$	± 36	V
Maximum voltage between V_{H} and V_{L} *4	$\mathrm{V}_{\mathrm{H}^{-} \mathrm{V}_{\mathrm{L}} \text { max }}$	No loading	60	V
Standby pin maximum voltage	Vst max		-0.3 to +5.5	V
Thermal resistance	өj-c	Per power transistor	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction temperature	Tj max	Both the Tj max and Tc max conditions must be met.	150	${ }^{\circ} \mathrm{C}$
IC substrate operating temperature	Tc max		125	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-30 to +125	${ }^{\circ} \mathrm{C}$
Allowable load shorted time *3	ts	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}= \pm 52 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}= \pm 32 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6 \Omega, \mathrm{f}=50 \mathrm{~Hz}, \\ & \mathrm{P}_{\mathrm{O}}=120 \mathrm{~W}, 1 \text {-channel active } \end{aligned}$	0.3	s

Electrical Characteristics at $\mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega$ (non-inductive load), $\mathrm{Rg}=600 \Omega, \mathrm{VG}=40 \mathrm{~dB}, \mathrm{VZ}=15 \mathrm{~V}$

Parameter	Symbol	Conditions *1						Ratings			unit
		$\begin{gathered} \text { V } \\ (\mathrm{V}) \end{gathered}$		$\begin{gathered} \mathrm{f} \\ (\mathrm{~Hz}) \end{gathered}$	Po (W)	$\begin{gathered} \text { THD } \\ (\%) \end{gathered}$		min	typ	max	
Output power	$\mathrm{P}_{\mathrm{O}}(1)$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \pm 52 \\ & \pm 32 \end{aligned}$	20 to 20k		0.8		120			W
	P_{O} (2)	V_{H}	$\begin{aligned} & \pm 42 \\ & \pm 28 \end{aligned}$	1k		0.8	$\mathrm{R}_{\mathrm{L}}=4 \Omega$		120		
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \pm 52 \\ & \pm 32 \end{aligned}$	20 to 20k	120				0.4		\%
Frequency characteristics	$\mathrm{f}_{\mathrm{L}}, \mathrm{f}_{\mathrm{H}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \pm 52 \\ & \pm 32 \end{aligned}$		1.0		+0-3dB	20 to 50k			Hz
Input impedance	ri	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \pm 52 \\ & \pm 32 \end{aligned}$	1k	1.0				55		k Ω
Output noise voltage *2	V_{NO}	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \pm 58 \\ & \pm 38 \end{aligned}$				$\mathrm{Rg}=2.2 \mathrm{k} \Omega$			1.0	mVrms
Quiescent current	${ }^{\text {I CCO }}$	V_{H}	± 58				$\mathrm{R}_{\mathrm{L}}=\infty$			30	mA
		V_{L}	± 38							100	
Output neutral voltage	V_{N}	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \pm 58 \\ & \pm 38 \end{aligned}$					-70	0	+70	mV
Pin 17 voltage when standby ON	VST ON	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \pm 52 \\ & \pm 32 \end{aligned}$				Standby		0	0.6	V
Pin 17 voltage when standby OFF	VST OFF	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \pm 52 \\ & \pm 32 \end{aligned}$				Operating	2.5	3.0		V

[Remarks]
*1: Unless otherwise specified, use a constant-voltage power supply to supply power when inspections are carried out.
*2: The output noise voltage values shown are peak values read with a VTVM. However, an AC stabilized (50 Hz) power supply should be used to minimize the influence of AC primary side flicker noise on the reading.
*3: Use the designated transformer power supply circuit shown in the figure below for the measurements of allowable load shorted time and output noise voltage.
*4: Design circuits so that $\left(\left|\mathrm{V}_{\mathrm{H}}\right|-\left|\mathrm{V}_{\mathrm{L}}\right|\right)$ is always less than 40 V when switching the power supply with the load connected.
*5: Set up the V_{L} power supply with an offset voltage at power supply switching $\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{O}}\right)$ of about 8 V as an initial target.
*6: Please connect -Pre VCC pin (\#5 pin) with the stable minimum voltage and connect so that current does not flow in by reverse bias.
*7: Use the standby pin (pin 17) so that the applied voltage never exceeds the maximum rating. The power amplifier is turned on by applying +2.5 V to +5.5 V to the standby pin (pin 17).
*8: Thermal design must be implemented based on the conditions under which the customer's end products are expected to operate on the market.
*9: A thermoplastic adhesive resin is used for this hybrid IC.

Designated transformer power supply (MG-250 equivalent)

Designated transformer power supply (MG-200 equivalent)

Package Dimensions

unit:mm (typ)

Internal Equivalent Circuit

Application Circuit Example

STK415-140-E
Recommended Values for Application Parts (for the test circuit)

Symbol	Recommended Value	Description	Larger than Recommended Value	Smaller than Recommended Value
R01, R02	$1.5 \mathrm{k} \Omega$	Determine the current flowing into the power switching circuit (comparator), (3 mA to 10 mA at V_{H} power switching)	Power holding circuit remains active at lower frequencies.	Power switching circuit activates at higher frequencies.
R03, R04	100ת/1W	Ripple filtering resistors (Used with C05 and C06 to form a ripple filter.)	Decreased pass-through current at high frequencies.	Increased pass-through current at high frequencies.
R05, R06	56k Ω	Input bias resistors (Virtually determine the input impedance.)	VN offset (Ensure R05=R18, R06=R1	hen changing.)
R08, R09	4.7 $/ 1.1 \mathrm{~W}$	Oscillation prevention resistor	-	-
R11, R12	4.7Ω	Oscillation prevention resistor	-	-
R14,R15	560Ω	Used with R18 and R19 to determine the voltage gain VG. (VG should desirably be determined by the R14 and R15 value.)	Likely to oscillate (VG<40dB)	None
R18, R19	$56 \mathrm{k} \Omega$	Used with R14 and R15 to determine the voltage gain VG.	-	-
R21, R22	$1 \mathrm{k} \Omega$	Input filtering resistor	-	-
R24, R26	$\begin{gathered} \hline 0.22 \Omega \pm 10 \%, \\ 5 \mathrm{~W} \\ \hline \end{gathered}$	Output emitter resistors (Use of cement resistor is desirable)	Decrease in maximum output power	Likely to cause thermalrunaway.
R30	Remarks *7	Use a limiting resistor according to the voltage applied to the standby pin so that it remains within the rating.		
C01, C02	$\begin{gathered} 100 \mu \mathrm{~F} / \\ 100 \mathrm{~V} \end{gathered}$	Oscillation prevention capacitors. - Insert the capacitors as close to the IC as possible to decrease the power impedance for reliable IC operation (use of electrolytic capacitors are desirable).	-	-
C03, C04	$\begin{gathered} 100 \mu \mathrm{~F} / \\ 50 \mathrm{~V} \end{gathered}$	Oscillation prevention capacitors. - Insert the capacitors as close to the IC as possible to decrease the power impedance for reliable IC operation (use of electrolytic capacitors are desirable).	-	-
C05, C06	$\begin{gathered} 100 \mu \mathrm{~F} / \\ 100 \mathrm{~V} \end{gathered}$	Decoupling capacitors. Eliminate ripple components that pass into the input side from the power line. (Used with R03 and R04 to form a ripple filter.)	Increase in ripple components that pass into the input side from the power line.	
C07, C08	3 pF	Oscillation prevention capacitor	Likely to oscillate	
C10, C11	$0.1 \mu \mathrm{~F}$	Oscillation prevention capacitor (Mylar capacitors are recommended.)	Likely to oscillate	
C13, C14	$\begin{gathered} 22 \mu \mathrm{~F} / \\ 10 \mathrm{~V} \end{gathered}$	NF capacitor (Changes the low cutoff frequency; $\left.e x / f_{L}=1 / 2 \pi \bullet C 13 \bullet R 14\right)$	Increase in low-frequency voltage gain, with higher pop noise at power-on.	Decrease in low-frequency voltage gain
C16, C17	$\begin{gathered} 2.2 \mu \mathrm{~F} / \\ 50 \mathrm{~V} \end{gathered}$	Input coupling capacitor (block DC current)	-	-
C19, C20	470pF	Input filter capacitor (Used with R21 and R22 to form a filter that suppresses high-frequency noises.)	-	-
C22, C23	100pF	Oscillation prevention capacitor	Likely to oscillate.	
D01, D02	18 V	Determine the offset voltage at $\mathrm{V}_{\mathrm{L}} \leftrightarrow \mathrm{V}_{\mathrm{H}}$ power.	Decreased distortion at power switching time	Increased distortion at power switching time.
D03, D04	$3 \mathrm{~A} / 60 \mathrm{~V}$	Reverse current prevention diodes (FRD is recommended.)	-	-
L01, L02	$3 \mu \mathrm{H}$	Oscillation prevention inductance	None	Likely to oscillate.

Sample PCB Trace Pattern

STK415-100-E-Sr/STK416-100-E-Sr PCB PARTS LIST

Parts List
STK415, 416-100Sr PCB Parts List

PCB No.		PARTS	RATING	$\begin{gathered} \text { STK415 (416) } \\ -090-E,-100-E, \\ -120-E, 130-E \end{gathered}$	STK415-140-E
R01, R02		-	ERX1SJ***	$1.5 \mathrm{k} \Omega, 1 \mathrm{~W}$	$1.5 \mathrm{k} \Omega, 1 \mathrm{~W}$
R03, R04		100 , 1W	ERG1SJ101	enabled	enabled
$\begin{aligned} & \text { R05, R06, (R07), R18, } \\ & \text { R19, (R20) } \end{aligned}$		$56 \mathrm{k} \Omega$, 1/6W	RN16S563FK	enabled	enabled
R08, R09, (R10)		4.7 Ω, 1W	ERX1SJ4R7	enabled	enabled
R11, R12, (R13)		4.7 $\Omega, 1 / 4 \mathrm{~W}$	RN14S4R7FK	enabled	enabled
R14, R15, (R16)		-	RN16S***FK	560 2 , 1/6W	560 2 , 1/6W
R21, R22, (R23)		$1 \mathrm{k} \Omega, 1 / 6 \mathrm{~W}$	RN16S102FK	enabled	enabled
R25, R27, (R29)		0.22ת $\pm 10 \%$, 5 W	BPR56CFR22J	Short	Short
R24, R26, (R28)		0.22ת $\pm 10 \%$, 5 W	BPR56CFR22J	enabled	enabled
R35, R36, R37		-	-	Short	Short
C01, C02, C05, C06		100 F F, 100V	100MV100HC	enabled	enabled
C03, C04		100 $\mu \mathrm{F}, 50 \mathrm{~V}$	50MV100HC	enabled	enabled
C07, C08, (C09)		3 pF	DD104-63B3ROK50	enabled	enabled
C10, C11, (C12)		$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$	ECQ-V1H104JZ	enabled	enabled
C13, C14, (C15)		$22 \mu \mathrm{~F}, 10 \mathrm{~V}$	10MV220HC	enabled	enabled
C16, C17, (C18)		$2.2 \mu \mathrm{~F}, 50 \mathrm{~V}$	50MV2R2HC	enabled	enabled
C19, C20, (C21)		470pF	DD104-63B471K50	enabled	enabled
C22, C23, (C24)		100pF	DD104-63B101K50	enabled	enabled
D01, D02		-	-	GZA15X (SANYO)	GZA18X (SANYO)
D03, D04		$\mathrm{IF}(\mathrm{AV})=3 \mathrm{~A} / 60 \mathrm{~V}$		enabled	enabled
L01, L02, (L03)		$3 \mu \mathrm{H}$		enabled	enabled
Stand-By	R30	3.3k $\Omega, 1 / 6 \mathrm{~W}$	RN16S332FK	enabled	enabled
	R32	$1 \mathrm{k} \Omega, 1 / 6 \mathrm{~W}$	RN16S102FK	enabled	enabled
	R33	33k $\Omega, 1 / 6 \mathrm{~W}$	RN16S333FK	enabled	enabled
	R34	2k $\Omega, 1 / 6 \mathrm{~W}$	RN16S202FK	enabled	enabled
	C25	47 $\mathrm{F}, 10 \mathrm{~V}$	10MV47HC	enabled	enabled
	D05	-	GMB01 (Ref.)	enabled	enabled
	TR1	-	2SC2274 (Ref.)	enabled	enabled
J01		Jumper	20 mm	enabled	enabled
J02, J03, J06		Jumper	10 mm	enabled	enabled
J04, J05		Jumper	7 mm	enabled	enabled

(*1) STK416-100Sr (3ch AMP) doesn’t mount parts of ().

Pin Assignments

[STK433-000/-100/-200 Sr \& STK415/416-100 Sr Pin Layout]

\begin{tabular}{|c|}
\hline \multirow{2}{*}{2ch class-AB} \& \& \& \& \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& \& \& \& \\
\hline \& \multicolumn{23}{|c|}{2ch classAB/2.00mm} \\
\hline \begin{tabular}{l}
STK433-030-E 30W/JEITA STK433-040-E 40W/JEITA STK433-060-E 50W/JEITA STK433-070-E 60W/JEITA \\
STK433-090-E 80W/JEITA STK433-100-E 100W/JEITA STK433-120-E 120W/JEITA STK433-130-E 150W/JEITA
\end{tabular} \& \& \& \& \& P \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{c} \\
\& \mathrm{C}
\end{aligned}
\] \& \[
\begin{aligned}
\& + \\
\& \text { v } \\
\& \text { C } \\
\& \text { C }
\end{aligned}
\] \& \[
\begin{gathered}
\hline \mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { / } \\
\mathrm{C} \\
\mathrm{H} \\
1 \\
+
\end{gathered}
\] \& \[
\begin{gathered}
\hline \mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
1
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline \mathrm{O} \\
\& \mathrm{U} \\
\& \mathrm{~T} \\
\& 1 \\
\& \mathrm{C} \\
\& \mathrm{H} \\
\& 2 \\
\& +
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
1 \\
\mathrm{C} \\
\mathrm{H} \\
2 \\
-
\end{gathered}
\] \& \[
\begin{gathered}
+ \\
\mathrm{P} \\
\mathrm{R} \\
\mathrm{E}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{S} \\
\mathrm{U} \\
\mathrm{~B} \\
\bullet \\
\mathrm{G} \\
\mathrm{~N} \\
\mathrm{D}
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{G} \\
\& \mathrm{~N} \\
\& \mathrm{D}
\end{aligned}
\] \& \begin{tabular}{l}
I \\
N \\
/ \\
C \\
H \\
1
\end{tabular} \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H
\[
1
\]
\end{tabular} \& \[
\begin{gathered}
\mathrm{S} \\
\mathrm{~T} \\
\mathrm{~A} \\
\mathrm{~N} \\
\mathrm{D} \\
\text { I } \\
\mathrm{B} \\
\mathrm{Y}
\end{gathered}
\] \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H \\
2
\end{tabular} \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
2
\end{gathered}
\] \& \& \& \& \\
\hline \multirow{2}{*}{3ch class-AB} \& \& \& \& \& 1 \& 2 \& 3 \& 4 \& 5 \& \& \& \& \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16 \& 17 \& 18 \& 19 \\
\hline \& \multicolumn{23}{|c|}{3ch classAB/2.00mm} \\
\hline \begin{tabular}{l}
STK433-230A-E 30W/JEITA \\
STK433-240A-E 40W/JEITA \\
STK433-260A-E 50W/JEITA \\
STK433-270-E 60W/JEITA \\
STK433-290-E 80W/JEITA \\
STK433-300-E 100W/JEITA \\
STK433-320-E 120W/JEITA \\
STK433-330-E 150W/JEITA
\end{tabular} \& \& \& \& \& \begin{tabular}{l}
P \\
R \\
E
\end{tabular} \& \begin{tabular}{l}
v \\
C \\
C
\end{tabular} \& \[
\begin{aligned}
\& + \\
\& \text { v } \\
\& \text { C } \\
\& \text { C }
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { / } \\
\mathrm{C} \\
\mathrm{H} \\
1 \\
+
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
1
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
2 \\
+
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
2 \\
-
\end{gathered}
\] \& \[
\begin{gathered}
+ \\
\mathrm{P} \\
\mathrm{R} \\
\mathrm{E}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{S} \\
\mathrm{U} \\
\mathrm{~B} \\
\bullet \\
\mathrm{G} \\
\mathrm{~N} \\
\mathrm{D}
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{G} \\
\& \mathrm{~N} \\
\& \mathrm{D}
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
1
\end{gathered}
\] \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H \\
1
\end{tabular} \& \[
\begin{gathered}
\mathrm{S} \\
\mathrm{~T} \\
\mathrm{~A} \\
\mathrm{~N} \\
\mathrm{D} \\
\text { I } \\
\mathrm{B} \\
\mathrm{Y}
\end{gathered}
\] \& \begin{tabular}{l}
N \\
F \\
1 \\
C \\
H \\
2
\end{tabular} \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
2
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
3
\end{gathered}
\] \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H \\
3
\end{tabular} \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
3 \\
+ \\
\hline
\end{gathered}
\] \& \begin{tabular}{c}
O \\
U \\
T \\
I \\
C \\
H \\
\\
\hline \\
-
\end{tabular} \\
\hline \multirow{2}{*}{2ch class-H} \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& \[
11
\] \& \[
12
\] \& \[
13
\] \& 14 \& 15 \& 16 \& 17 \& 18 \& 19 \& \& \& \& \\
\hline \& \multicolumn{23}{|c|}{2ch classH/2.00mm} \\
\hline STK415-090-E 80W/JEITA STK415-100-E 90W/JEITA STK415-120-E 120W/JEITA STK415-130-E 150W/JEITA STK415-140-E 180WIJEITA \& \[
\begin{aligned}
\& + \\
\& \text { V } \\
\& \text { L }
\end{aligned}
\] \& V \& \[
\begin{gathered}
+ \\
\mathrm{O} \\
\mathrm{~F} \\
\mathrm{~F} \\
\mathrm{~S} \\
\mathrm{E} \\
\mathrm{~T}
\end{gathered}
\] \& \begin{tabular}{l}
0 \\
F \\
F \\
S \\
E \\
T
\end{tabular} \& \begin{tabular}{l}
P \\
R \\
E
\end{tabular} \& -
V
H \& +
V
H \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
1 \\
+
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
1
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
2 \\
+
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
2 \\
-
\end{gathered}
\] \& \[
\begin{gathered}
+ \\
\mathrm{P} \\
\mathrm{R} \\
\mathrm{E}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{S} \\
\mathrm{U} \\
\mathrm{~B} \\
\bullet \\
\mathrm{G} \\
\mathrm{~N} \\
\mathrm{D}
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{G} \\
\& \mathrm{~N} \\
\& \mathrm{D}
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
1
\end{gathered}
\] \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H \\
1
\end{tabular} \& S
T
A
N
D
I
B
Y \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H \\
2
\end{tabular} \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
2
\end{gathered}
\] \& \& \& \& \\
\hline \multirow{2}{*}{3ch class-H} \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& \[
11
\] \& \[
12
\] \& \[
13
\] \& 14 \& 15 \& 16 \& 17 \& 18 \& 19 \& 20 \& 21 \& 22 \& 23 \\
\hline \& \multicolumn{23}{|c|}{3ch class \(\mathrm{H} / 2.00 \mathrm{~mm}\)} \\
\hline \begin{tabular}{l}
STK416-090-E 80W/JEITA \\
STK416-100-E 90W/JEITA \\
STK416-120-E 120W/JEITA \\
STK416-130-E 150W/JEITA
\end{tabular} \& \[
\begin{aligned}
\& + \\
\& \text { V } \\
\& \text { L }
\end{aligned}
\] \& V \& \[
\begin{gathered}
+ \\
\mathrm{O} \\
\mathrm{~F} \\
\mathrm{~F} \\
\mathrm{~S} \\
\mathrm{E} \\
\mathrm{~T}
\end{gathered}
\] \& \[
\begin{aligned}
\& - \\
\& \mathrm{O} \\
\& \mathrm{~F} \\
\& \mathrm{~F} \\
\& \mathrm{~S} \\
\& \mathrm{E} \\
\& \mathrm{~T}
\end{aligned}
\] \& -
\(P\)
\(R\)
\(E\) \& V
H
H \& +
V
H \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
1 \\
+
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
1 \\
-
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
2 \\
+
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
2 \\
-
\end{gathered}
\] \& \[
\begin{gathered}
+ \\
\mathrm{P} \\
\mathrm{R} \\
\mathrm{E}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{S} \\
\mathrm{U} \\
\mathrm{~B} \\
\text { - } \\
\mathrm{G} \\
\mathrm{~N} \\
\mathrm{D}
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{G} \\
\& \mathrm{~N} \\
\& \mathrm{D}
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
1
\end{gathered}
\] \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H \\
1
\end{tabular} \& S
T
A
N
D
I
B
Y \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H \\
2
\end{tabular} \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
2
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{I} \\
\mathrm{~N} \\
\mathrm{I} \\
\mathrm{C} \\
\mathrm{H} \\
3
\end{gathered}
\] \& \begin{tabular}{l}
N \\
F \\
/ \\
C \\
H \\
3
\end{tabular} \& \[
\begin{gathered}
\mathrm{O} \\
\mathrm{U} \\
\mathrm{~T} \\
\text { I } \\
\mathrm{C} \\
\mathrm{H} \\
3 \\
+
\end{gathered}
\] \& O
U
T
I
C
H

3

-

\hline
\end{tabular}

Evaluation Board Characteristics

[Thermal Design Example for STK415-140-E ($\mathrm{R}_{\mathrm{L}}=8 \Omega$)]
The thermal resistance, $\theta \mathrm{c}-\mathrm{a}$, of the heat sink for total power dissipation, Pd , within the hybrid IC is determined as follows.
Condition 1: The hybrid IC substrate temperature, Tc, must not exceed $125^{\circ} \mathrm{C}$.
$\mathrm{Pd} \times \theta \mathrm{c}-\mathrm{a}+\mathrm{Ta}<125^{\circ} \mathrm{C}$ \qquad
Ta: Guaranteed ambient temperature for the end product
Condition 2: The junction temperature, Tj , of each power transistor must not exceed $150^{\circ} \mathrm{C}$.
$\operatorname{Pd} \times \theta \mathrm{c}-\mathrm{a}+\mathrm{Pd} / \mathrm{N} \times \theta \mathrm{j}-\mathrm{c}+\mathrm{Ta}<150^{\circ} \mathrm{C}$
N : Number of power transistors
θj-c: Thermal resistance per power transistor
However, the power dissipation, Pd, for the power transistors shall be allocated equally among the number of power transistors.
The following inequalities result from solving equations (1) and (2) for $\theta c-a$.

$$
\begin{align*}
& \theta \mathrm{c}-\mathrm{a}<(125-\mathrm{Ta}) / \mathrm{Pd} \tag{1}\\
& \theta \mathrm{c}-\mathrm{a}<(150-\mathrm{Ta}) / \mathrm{Pd}-\theta \mathrm{j}-\mathrm{c} / \mathrm{N} \tag{2}\\
& \text { - Supply voltage } \quad \mathrm{V}_{\mathrm{H}}, \mathrm{~V}_{\mathrm{L}} \\
& \text { - Load resistance } \mathrm{R}_{\mathrm{L}} \\
& \text { - Guaranteed ambient temperature } \mathrm{Ta}
\end{align*}
$$

\qquad
Values that satisfy these two inequalities at the same time represent the required heat sink thermal resistance.
When the following specifications have been stipulated, the required heat sink thermal resistance can be determined from formulas (1)' and (2)'.

[Example]

When the IC supply voltage, $\mathrm{V}_{\mathrm{H}}= \pm 52 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}= \pm 32 \mathrm{~V}$ and R_{L} is 6Ω, the total power dissipation, Pd , within the hybrid IC, will be a maximum of 156 W at 1 kHz for a continuous sine wave signal according to the $\mathrm{Pd}-\mathrm{P}_{\mathrm{O}}$ characteristics. For the music signals normally handled by audio amplifiers, a value of $1 / 8 \mathrm{P}_{\mathrm{O}}$ max is generally used for Pd as an estimate of the power dissipation based on the type of continuous signal. (Note that the factor used may differ depending on the safety standard used.)

This is:

$$
\mathrm{Pd} \approx 63.0 \mathrm{~W} \quad\left(\text { when } 1 / 8 \mathrm{P}_{\mathrm{O}} \text { max. }=15 \mathrm{~W}, \mathrm{P}_{\mathrm{O}} \max .=120 \mathrm{~W}\right)
$$

The number of power transistors in audio amplifier block of these hybrid ICs, N , is 4 , and the thermal resistance per transistor, $\theta \mathrm{j}-\mathrm{c}$, is $1.5^{\circ} \mathrm{C} / \mathrm{W}$. Therefore, the required heat sink thermal resistance for a guaranteed ambient temperature, Ta , of $50^{\circ} \mathrm{C}$ will be as follows.

From formula (1)'

$$
\begin{aligned}
\theta \mathrm{c}-\mathrm{a} & <(125-50) / 63.0 \\
& <1.19 \\
\theta \mathrm{c}-\mathrm{a} & <(150-50) / 63.0 \\
& <1.21
\end{aligned}
$$

From formula (2)' $\quad \theta \mathrm{c}-\mathrm{a}<(150-50) / 63.0-1.5 / 4$
Therefore, the value of $1.19^{\circ} \mathrm{C} / \mathrm{W}$, which satisfies both of these formulae, is the required thermal resistance of the heat sink.
Note that this thermal design example assumes the use of a constant-voltage power supply, and is therefore not a verified design for any particular user's end product.

STK415-100 Series Stand-by control, Mute control, Load-short protection \& DC offset protection application
 *3 DIODE 3A/60V

STK415-100 Series Application explanation

The protection circuit application for the STK415-100sr consists of the following blocks (blocks (1) to (4)).
(1) Standby control circuit block
(2) Load short-circuit detection block
(3) Latch-up circuit block
(4) DC voltage protection block

1) Standby control circuit block

Concerning pin 17 reference voltage VST
$<1>$ Operation mode
The switching transistor of the predriver IC turns on when the pin 17 reference voltage, VST, becomes greater than or equal to 2.5 V , placing the amplifier into the operation mode.
Example: When VST (min.) $=2.5 \mathrm{~V}$
I 1 is approximately equal to 0.40 mA since $\mathrm{VST}=(* 2) \times \mathrm{IST}+0.6 \mathrm{~V} \rightarrow 2.5 \mathrm{~V}=4.7 \mathrm{k} \Omega \times \mathrm{IST}+0.6 \mathrm{~V}$.
<2> Standby mode
The switching transistor of the predriver IC turns off when the pin 17 reference voltage, VST, becomes lower
than or equal to 0.6 V (typ. 0 V), placing the amplifier into the standby mode.
Example: When VST $=0.6 \mathrm{~V}$
I 1 is approximately equal to 0 mA since $\mathrm{VST}=(* 2) \times \mathrm{IST}+0.6 \mathrm{~V} \rightarrow 0.6 \mathrm{~V}=4.7 \mathrm{k} \Omega \times \mathrm{IST}+0.6 \mathrm{~V}$.
(*) Limiting resistor
Determine the value of R1 so that the voltage VST applied to the standby pin (pin 17) falls within the rating (+2.5V to 5.5 V (typ. 3.0V)).
(*2) The standby control voltage must be supplied from the host including microcontrollers.
(*3) A $4.7 \mathrm{k} \Omega$ limiting resistor is also incorporated inside the hybrid IC (at pin 17).
2) Load short-circuit detection block

Since the voltage between point B and point C is less than 0.6 V in normal operation mode ($\mathrm{V}_{\mathrm{BE}}<0.6 \mathrm{~V}$) and TR1 (or TR2) is not activated, the load short-circuit detection block does not operate.
When a load short-circuit occurs, however, the voltage between point B and point C becomes larger than 0.6 V , causing TR1 (or TR2) to turn on ($\mathrm{V}_{\mathrm{BE}}>0.6 \mathrm{~V}$), and current I 2 to flows.
3) Latch-up circuit block

TR3 is activated when I2 is supplied to the latch-up circuit.
When TR3 turns on and current I3 starts flowing, VST goes down to 0 V (standby mode), protecting the power amplifier.
Since TR3 and TR4 configure a thyristor, once TR3 is activated, the IC is held in the standby mode.
To release the standby mode and reactivate the power amplifier, it is necessary to set the standby control voltage (*2) temporarily low (0V). Subsequently, when the standby control is returned to high, the power amplifier will become active again.
(*4) The I3 value varies depending on the supply voltage. Determine the value of R2 using the formula below, so that I1 is equal to or less than I3.

$$
\mathrm{I} 1 \leq \mathrm{I} 3=\mathrm{V}_{\mathrm{CC}} / \mathrm{R} 2
$$

4) DC offset protection block

The DC offset protection circuit is activated when $\pm 0.5 \mathrm{~V}$ (typ) voltage is applied to either "OUT CH1" or "OUT $\mathrm{CH} 2, "$ and the hybrid IC is shut down (standby mode).
To release the IC from the standby mode and reactivate the power amplifier, it is necessary to set the standby control voltage temporarily low (0V).
Subsequently, when the standby control is returned to high (+5 V , for example), the power amplifier will become active again.
The protection level must be set using the $82 \mathrm{k} \Omega$ resistor. Furthermore, the time constant must be determined using $22 \mu / / 22 \mu$ capacitors to prevent the amplifier from malfunctioning due to the audio signal.

STK415-140-E BTL Application

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
\square SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
\square In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of July 2009. Specifications and information herein are subject to change without notice.

