TURBOSWITCH Tм "A". ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCTS CHARACTERISTICS

$\mathbf{I F}_{\text {(AV }}$	1 A
$\mathbf{V}_{\text {RRM }}$	600 V
$\mathbf{t r r}$ (typ)	20 ns
$\mathbf{V}_{\text {F }}$ (max)	1.5 V

FEATURES AND BENEFITS

- SPECIFIC TO "FREEWHEEL MODE" OPERA -TIONS : FREEWHEEL ORBOOSTERDIODE
- ULTRA-FAST AND SOFT RECOVERY
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR
- HIGH FREQUENCY OPERATIONS
- SURFACE MOUNT DEVICE

PRELIMINARY DATASHEET

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diodes from 600 V to 1200 V .
TURBOSWITCH "A" family drastically cuts losses in both the diode and the associated switching IGBT and MOSFET in all "Freewheel Mode" operations and is particulary suitable and efficient
in Motor Control Freewheel applications and in Booster diode applications in Power Factor Control circuitries.
Packaged in SOD6 surface mount envelope, these 600 V devices are particularly intended for use on 240 V domestic mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	600	V
$\mathrm{~V}_{\text {RSM }}$	Non Repetitive Peak Reverse Voltage	600	V
$\mathrm{I}_{\mathrm{F}(\mathrm{RMS})}$	RMS Forward Current	3.5	A
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Current $(\mathrm{tp}=5 \mu \mathrm{~s}, \quad \mathrm{f}=5 \mathrm{kHz})$	22	A
$\mathrm{~T}_{\mathrm{j}}$	Max. Operating Junction Temperature	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature range	$-65 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$

STTA106U

THERMAL AND POWER DATA

Symbol	Parameter	Conditions	Value	Unit
$R_{\text {th(}(-1)}$	Junction to Lead Thermal Resistance		23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{1}	Conduction Power Dissipation (see fig. 2)	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}=0.8 \mathrm{~A} \quad \delta=0.5$ Tlead $=93^{\circ} \mathrm{C}$	1.4	W
$\mathrm{P}_{\max }$	Total Power Dissipation $\mathrm{Pmax}=\mathrm{P} 1+\mathrm{P} 3 \quad(\mathrm{P} 3=10 \% \mathrm{P} 1)$	Tlead $=90^{\circ} \mathrm{C}$	1.5	W

STATIC ELECTRICAL CHARACTERISTICS (see Fig. 2)

Symbol		Parameter	Test Conditions		Min	Typ	Max	Unit
V_{F}	*	Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$		1.1	$\begin{gathered} 1.75 \\ 1.5 \end{gathered}$	V
I_{R}		Reverse Leakage Current	$\begin{aligned} & V_{R}=0.8 \\ & x V_{R R M} \end{aligned}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$		250	$\begin{gathered} 10 \\ 750 \end{gathered}$	$\mu \mathrm{A}$

Test pulses widths: * $\mathrm{tp}=380 \mu \mathrm{~s}$, duty cycle $<2 \%$
${ }^{* *} \mathrm{tp}=5 \mathrm{~ms}$, duty cycle $<2 \%$

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING (see Fig. 3)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
trr	Reverse Recovery Time	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \quad \mathrm{Irr}=0.25 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A} \quad \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{dl} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{S} \quad \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$		20	50	ns
IRM	Maximum Recovery Current	$\begin{aligned} & \mathrm{Tj}=125^{\circ} \mathrm{C} \quad \mathrm{VR}=400 \mathrm{~V} \quad \mathrm{IF}=1 \mathrm{~A} \\ & \mathrm{~d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=-8 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		1.6	0.6	A
S factor	Softness factor	$\begin{aligned} & \mathrm{Tj}=125^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V} \quad \mathrm{IF}=1 \mathrm{~A} \\ & \mathrm{dlF} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		TBD		1

TURN-ON SWITCHING (see Fig. 4)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
tfr	Forward Recovery Time	$\mathrm{Tj}=25^{\circ} \mathrm{C}$ $\mathrm{IF}=1 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=8 \mathrm{~A} / \mathrm{hs}$ measured at, $1.1 \times \mathrm{V}_{\mathrm{F}} \mathrm{max}$			500	ns
		Peak Forward Voltage			10	V

APPLICATION DATA

The TURBOSWITCH ${ }^{\text {TM }}$ " A " is especially designed to provide the lowest overall power losses in any "Freewhell Mode" application (see fig. 1) considering both the diode and the companion transistor, thus optimizing the overall performance in the end application.

The way of calculating the power losses is given below:

Fig. 1 : "FREEWHEEL" MODE

APPLICATION DATA (Cont'd)

Fig. 2 : STATIC CHARACTERISTICS

Fig. 3 : TURN-OFF CHARACTERISTICS

Conduction losses :
$\mathrm{P} 1=\mathrm{V}_{\mathrm{t}} 0 \times \operatorname{IF}(\mathrm{AV})+\mathrm{R}_{\mathrm{d}} \times \mathrm{IF}^{2}(\mathrm{RMS})$
with

$$
\begin{gathered}
V_{t 0}=1.15 \mathrm{~V} \\
R_{d}=0.350 \mathrm{Ohm} \\
\text { (Max values at } 125^{\circ} \mathrm{C} \text {) }
\end{gathered}
$$

Reverse losses :
$\mathrm{P} 2=\mathrm{VR} \times \operatorname{IR} \times(1-\delta)$

Turn-on losses :
(in the transistor, due to the diode)

$$
\begin{aligned}
P 5 & =\frac{V_{R} \times I_{R M}{ }^{2} \times(3+2 \times S) \times F}{6 \times d I_{F} / d t} \\
& +\frac{V_{R} \times I_{R M} \times I_{L} \times(S+2) \times F}{2 \times d I_{F} / d t}
\end{aligned}
$$

Turn-off losses (in the diode) :

$$
\mathrm{P} 3=\frac{V_{R} \times I_{R M^{2}} \times S \times F}{6 \times d I_{F} / d t}
$$

P3 and P5 are suitable for power MOSFET and IGBT

APPLICATION DATA (Cont'd)

Fig. 4 : TURN-ON CHARACTERISTICS

Ratings and characteristics curves are ON GOING.

Turn-on losses :
P4 $=0.4$ (VFP - VF) \times IFmax $\times \operatorname{tfr} \times F$

STTA106U

PACKAGE MECHANICAL DATA
SOD6 Plastic (JEDEC outline)

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No icense is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

