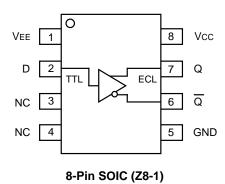


TTL-to-DIFFERENTIAL ECL TRANSLATOR

FEATURES

- 500ps typical propagation delay
- Differential ECL output
- PNP TTL input for minimal loading
- Flow-through pinouts
- Available in 8-pin SOIC package


DESCRIPTION

The SY100ELT24 is a TTL-to-differential ECL translator. Because ECL levels are used, a +5V, -5.2V (or -4.5V) and ground are required. The small outline 8-lead SOIC package and the single gate of the ELT24 makes it ideal for those applications where performance, space and low power are at a premium.

PIN NAMES

Pin	Function
Q, <u>Q</u>	Differential ECL Output
D	TTL Input
Vcc	Positive Supply
Vee	Negative Supply
GND	Ground

PACKAGE/ORDERING INFORMATION

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100ELT24ZC	Z8-1	Commercial	XEL24	Sn-Pb
SY100ELT24ZCTR ⁽²⁾	Z8-1	Commercial	XEL24	Sn-Pb
SY100ELT24ZI	Z8-1	Industrial	XEL24	Sn-Pb
SY100ELT24ZITR ⁽²⁾	Z8-1	Industrial	XEL24	Sn-Pb
SY100ELT24ZG ⁽³⁾	Z8-1	Industrial	XEL24 with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100ELT24ZGTR ^(2, 3)	Z8-1	Industrial	XEL24 with with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals only.

2. Tape and Reel.

3. Pb-Free package is recommended for new designs.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Paramter	Value	Unit
Vcc	Power Supply Voltage	-0.5 to +7.0	V
Vi	TTL Input Voltage	-0.5 to Vcc	V
lı	TTL Input Current	-30 to +5.0	mA
Ιουτ	ECL Output Current — Continuous — Surge	50 100	mA
TLEAD	Lead Temperature (soldering, 20sec.)	+260	°C
Tstore	Storage Temperature	-65 to +150	°C
ТА	Operating Temperature	-40 to +85	°C

NOTE:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

VCC = 4.5V to 5.5V; VEE = -4.2V to -5.5V

		TA = -40°C		TA = 0°C		TA = +25°C		TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Icc	Power Supply Current	_	10		10		10	_	10	mA	—
IEE	Power Supply Current	_	20		20		20	_	20	mA	No output load

AC ELECTRICAL CHARACTERISTICS

VCC = 4.5V to 5.5V; VEE = -4.2V to -5.5V

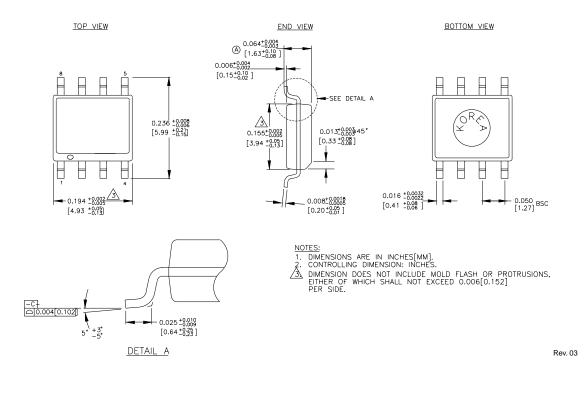
		TA = -	-40°C	TA =	TA = 0°C		TA = +25°C		C TA =			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Condition
tPLH tPHL	Propagation Delay	300	900	300	900	300	500	900	300	900	ps	50 Ω to –2.0V
tr tf	Output Rise/Fall Time 20% to 80%	200	700	200	700	200	300	700	200	700	ps	50 Ω to –2.0V
fmax	Maximum Input Frequency	200	—	200		200	—	—	200	_	MHz	

TRUTH TABLE

D	Q	Q
Н	Н	L
L	L	Н
Open	Н	L

TTL DC ELECTRICAL CHARACTERISTICS

VCC = 4.5V to 5.5V; VEE = -4.2V to -5.5V


		TA = -	$= -40^{\circ}C \qquad TA = 0^{\circ}C$: 0°C	TA = -	+25°C	TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Vih	Input HIGH Voltage	2.0	_	2.0	_	2.0	_	2.0	_	V	_
VIL	Input LOW Voltage	—	0.8	_	0.8	_	0.8	_	0.8	V	_
Іін	Input HIGH Current	_	20 100		20 100	_	20 100	_	20 100	μA	VIN = 2.7V VIN = VCC
lı∟	Input LOW Current	—	-0.6	_	-0.6	_	-0.6	—	-0.6	mA	VIN = 0.5V
Vik	Input Clamp Voltage		-1.2	_	-1.2		-1.2		-1.2	V	lın = −18mA

ECL DC ELECTRICAL CHARACTERISTICS

VCC = 4.5V to 5.5V; VEE = -4.2V to -5.5V

		TA = −40°C		TA = 0°C		TA = +25°C		TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Vон	Output HIGH Voltage	-1085	-880	-1025	-880	-1025	-880	-1025	-880	mV	50 Ω to –2.0V
Vol	Output LOW Voltage	-1830	-1555	-1810	-1620	-1810	-1620	-1810	-1620	mV	50 Ω to –2.0V

8-PIN SOIC .150" WIDE (Z8-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

теL + 1 (408) 944-0800 FAX + 1 (408)474-1000 web http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.