

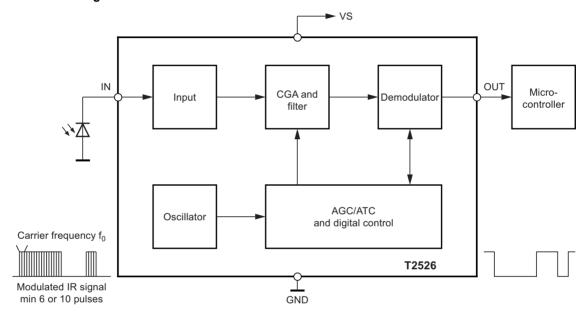
Low-voltage IR Receiver ASSP

DATASHEET

Features

- No external components except PIN diode
- Supply-voltage range: 2.7V to 5.5V
- Highest sensitivity due to automatic sensitivity adaption (AGC) and automatic strong signal adaption (ATC)
- Automatic supply voltage adaptation
- Highest immunity against disturbances from daylight and lamps
- Available for carrier frequencies between 30kHz to 56kHz; adjusted by zener-diode fusing ±2.5%
- TTL and CMOS compatible

Applications


- Home entertainment applications (audio/video)
- Home appliances
- Remote control equipment

1. Description

The Atmel® IC T2526 is a complete IR receiver for data communication developed and optimized for use in carrier-frequency-modulated transmission applications. The IC offers highest sensitivity as well as highest suppression of noise from daylight and lamps. The Atmel T2526 is available with broadest range of frequencies (30, 33, 36, 37, 38, 40, 44, 56kHz) and 3 different noise suppression regulation types (standard, lamp, short burst) covering requirements of high-end remote control solutions (please refer to selection guide available for Atmel T2525/T2526). Atmel The T2526 operates in a supply voltage range of 2.7V to 5.5V.

The function of the Atmel T2526 can be described using the block diagram of Figure 1-1 on page 2. The input stage meets two main functions. First it provides a suitable bias voltage for the PIN diode. Secondly the pulsed photo-current signals are transformed into a voltage by a special circuit which is optimized for low noise applications. After amplification by a controlled gain amplifier (CGA) the signals have to pass a tuned integrated narrow bandpass filter with a center frequency f_0 which is equivalent to the chosen carrier frequency of the input signal The demodulator is used first to convert the input burst signal to a digital envelope output pulse and to evaluate the signal information quality, i.e., unwanted pulses will be suppressed at the output pin. All this is done by means of an integrated dynamic feedback circuit which varies the gain as a function of the present environmental conditions (ambient light, modulated lamps etc.). Other special features are used to adapt to the current application to secure best transmission quality.

Figure 1-1. Block Diagram

2. Pin Description

Table 2-1. Pin Description

Symbol	Function
VS	Supply voltage
OUT	Data output
IN	Input PIN-diode
GND	Ground

3. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Value	Unit
Supply voltage	V _S	-0.3 to +6	V
Supply current	I _S	3	mA
Input voltage	V_{IN}	–0.3 to $V_{\rm S}$	V
Input DC current at V _S = 5V	I _{IN}	0.75	mA
Output voltage	V_{O}	–0.3 to $V_{\rm S}$	V
Output current	I _O	10	mA
Operating temperature	T_{amb}	–25 to +85	°C
Storage temperature	T_{stg}	-40 to +125	°C
Power dissipation at T _{amb} = 25°C	P _{tot}	30	mW

4. Electrical Characteristics, 3-V Operation

 T_{amb} = 25°C, V_S = 3V unless otherwise specified.

No.	Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit	Type*
1	Supply		J		.,,,,		0	.,,,,
1.1	Supply-voltage range		V _S	2.7	3.0	3.3	V	С
1.2	Supply current	I _{IN} =0	Is	0.7	0.9	1.3	mA	В
2	Output							
2.1	Internal pull-up resistor ⁽¹⁾	T _{amb} = 25°C See Figure 6-10 on page 9	R_{PU}		30/40		kΩ	Α
2.2	Output voltage low	R_2 = 2.4 kΩ See Figure 6-10 on page 9	V_{OL}			250	mV	В
2.3	Output voltage high		V_{OH}	$V_{S} - 0.25$		Vs	V	В
2.4	Output current clamping	R ₂ = 0 See Figure 6-10 on page 9	I _{OCL}		8		mA	В
3	Input							
3.1	Input DC current	V _{IN} = 0 See Figure 6-10 on page 9	I _{IN_DCMAX}	-150			μΑ	С
3.2	Input DC current See Figure 6-3 on page 6	V _{IN} = 0; Vs = 3V T _{amb} = 25°C	I _{IN_DCMAX}		-350		μΑ	В
3.3	Minimum detection threshold current See Figure 6-1 on page 6	Test signal: See Figure 6-9 on page 9 V _S = 3V	I _{Eemin}		-700		рА	В
3.4	Minimum detection threshold current with AC current disturbance IIN_AC100 = 3µA at 100Hz	T_{amb} = 25°C, I_{IN_DC} =1 μ A square pp burst N = 16 f = f ₀ ; t _{PER} = 10ms Figure 6-8 on page 8 BER = 50 ⁽²⁾	I _{Eemin}		-1300		pA	С

^{*)} Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Notes: 1. Depending on version, see "Ordering Information"

- 2. BER = bit error rate; e.g., BER = 5% means that with P = 20 at the input pin 19...21 pulses can appear at the pin OUT
- 3. After transformation of input current into voltage

Electrical Characteristics, 3-V Operation (Continued) 4.

 T_{amb} = 25°C, V_{S} = 3V unless otherwise specified.

No.	Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit	Type*
3.5	Maximum detection threshold current with $V_{IN} > 0V$	Test signal: See Figure 6-9 on page 9 $V_S = 3V$, $T_{amb} = 25^{\circ}C$ $I_{IN_DC} = 1\mu A$ square pp burst N = 16 $f = f_0$; $t_{PER} = 10ms$ Figure 6-8 on page 8 BER = $5\%^{(2)}$	I _{Eemax}	-200			μА	D
4	Controlled Amplifier and Fil	ter						
4.1	Maximum value of variable gain (CGA)		G _{VARMAX}		51		dB	D
4.2	Minimum value of variable gain (CGA)		G _{VARMIN}		- 5		dB	D
4.3	Total internal amplification ⁽³⁾		G _{MAX}		71		dB	D
4.4	Center frequency fusing accuracy of bandpass	V _S = 3V, T _{amb} = 25°C	f _{03V_FUSE}	-2.5	f_0	+2.5	%	Α
4.5	Overall accuracy center frequency of bandpass		f _{03V}	-5.5	f_0	+3.5	%	С
4.6	Overall accuracy center frequency of bandpass	T _{amb} = 0 to 70°C	f _{03V}	-4.5	f_0	+3.0	%	С
4.7	BPF bandwidth	$-3dB$; $f_0 = 38kHz$; See Figure 6-7 on page 8	В		3.8		kHz	С

^{*)} Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

- Notes: 1. Depending on version, see "Ordering Information"
 - 2. BER = bit error rate; e.g., BER = 5% means that with P = 20 at the input pin 19...21 pulses can appear at the pin OUT
 - 3. After transformation of input current into voltage

5. **Electrical Characteristics, 5-V Operation**

 T_{amb} = 25°C, V_S = 5V unless otherwise specified.

anib	, 3	•						
No.	Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit	Type*
5	Supply							
5.1	Supply-voltage range		V_S	4.5	5.0	5.5	V	С
5.2	Supply current	I _{IN} =0	I _S	0.9	1.2	1.6	mA	В
6	Output							
6.1	Internal pull-up resistor ⁽¹⁾	T _{amb} = 25°C See Figure 6-10 on page 9	R_{PU}		30/40		kΩ	Α
6.2	Output voltage low	R_2 = 2.4 k Ω See Figure 6-10 on page 9	V _{OL}			250	mV	В
6.3	Output voltage high		V_{OH}	$V_{S} - 0.25$		Vs	V	В

^{*)} Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Notes: 1. Depending on version, see "Ordering Information"

- 2. BER = bit error rate; e.g., BER = 5% means that with P = 20 at the input pin 19...21 pulses can appear at the pin OUT
- 3. After transformation of input current into voltage

5. Electrical Characteristics, 5-V Operation (Continued)

 T_{amb} = 25°C, V_S = 5V unless otherwise specified.

No.	Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit	Type*
6.4	Output current clamping	R ₂ = 0 See Figure 6-10 on page 9	I _{OCL}		8		mA	В
7	Input							
7.1	Input DC current	V _{IN} = 0 See Figure 6-10 on page 9	I _{IN_DCMAX}	-400			μΑ	С
7.2	Input DC-current See Figure 6-4 on page 7	$V_{IN} = 0$; $V_S = 5V$ $T_{amb} = 25^{\circ}C$	I _{IN_DCMAX}		-700		μΑ	В
7.3	Min. detection threshold current See Figure 6-2 on page 6		I _{Eemin}		-850		pA	В
7.4	Min. detection threshold current with AC current disturbance IIN_AC100 = 3 μA at 100 Hz	$T_{amb} = 25^{\circ}C$ $I_{IN_DC} = 1\mu A$ square pp burst N = 16 f = f ₀ ; t _{PER} = 10ms Figure 6-8 on page 8 BER = $50^{(2)}$	I _{Eemin}		-2000		pA	С
7.5	Max. detection threshold current with $V_{IN} > 0V$	Test signal: See Figure 6-9 on page 9 $V_S = 5V$, $T_{amb} = 25^{\circ}C$, $I_{IN_DC} = 1\mu A$ square pp burst $N = 16$ $f = f_0$; $t_{PER} = 10ms$ Figure 6-8 on page 8 BER = $5\%^{(2)}$	I _{Eemax}	-500			μΑ	D
8	Controlled Amplifier and I	Filter						
8.1	Maximum value of variable gain (CGA)		G _{VARMAX}		51		dB	D
8.2	Minimum value of variable gain (CGA)		G _{VARMIN}		- 5		dB	D
8.3	Total internal amplification ⁽³⁾		G _{MAX}		71		dB	D
8.4	Resulting center frequency fusing accuracy	f_0 fused at $V_S = 3V$ $V_S = 5V$, $T_{amb} = 25$ °C	f _{05V}		f _{03V-FUSE} + 0.5		%	Α

^{*)} Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Notes: 1. Depending on version, see "Ordering Information"

- 2. BER = bit error rate; e.g., BER = 5% means that with P = 20 at the input pin 19...21 pulses can appear at the pin OUT
- 3. After transformation of input current into voltage

5.1 ESD

All pins \Rightarrow 2000V HBM; 200V MM, MIL-STD-883C, Method 3015.7

5.2 Reliability

Electrical qualification (1000h) in molded plastic package

6. Typical Electrical Curves at T_{amb} = 25°C

Figure 6-1. I_{Eemin} versus I_{IN_DC} , $V_S = 3V$

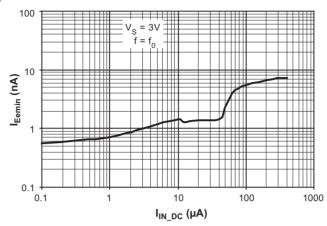


Figure 6-2. I_{Eemin} versus $I_{IN DC}$, $V_S = 5V$

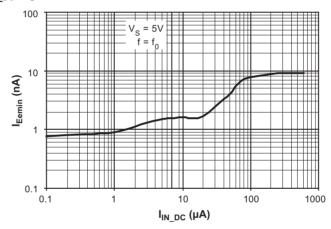


Figure 6-3. V_{IN} versus I_{IN_DC} , $V_S = 3V$

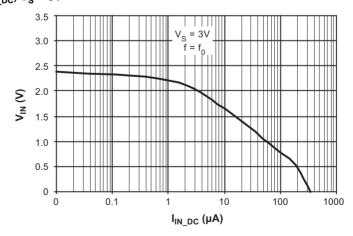


Figure 6-4. V_{IN} versus I_{IN_DC} , $V_S = 5V$

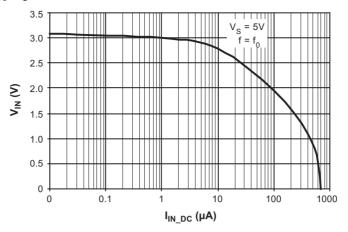


Figure 6-5. Data Transmission Rate, $V_S = 3V$

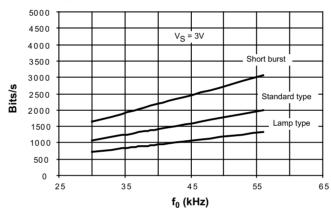


Figure 6-6. Data Transmission Rate, $V_s = 5V$

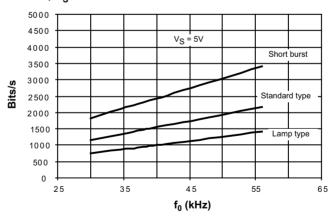
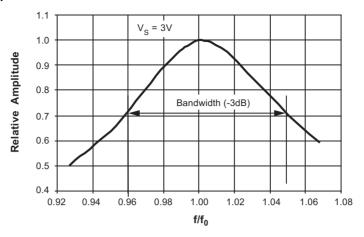



Figure 6-7. Typical Bandpass Curve

Q = $f/f_0/B$; B => -3dB values.

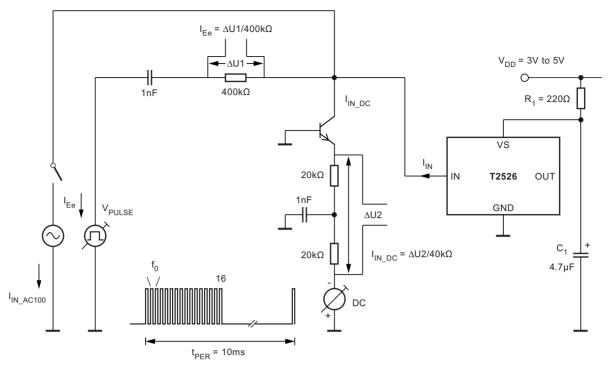
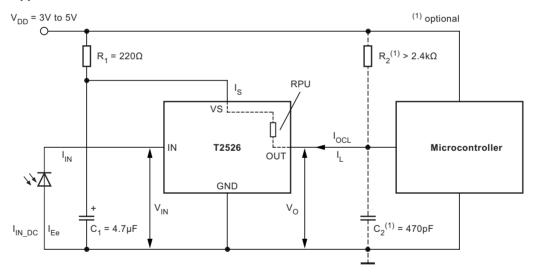
Example: Q = 1/(1.047 - 0.954) = 11

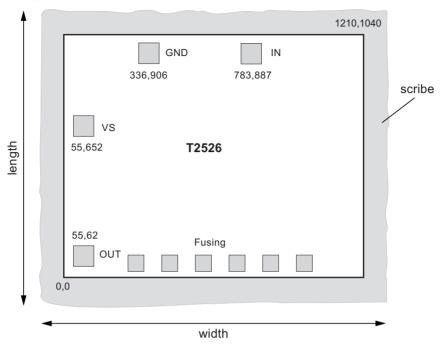
Figure 6-8. Illustration of Used Terms

Example: f = 30kHz, burst with 16 pulses, 16 periods

|**→** 533μs **→**| Burst (N = 16 pulses) IN 7 33µs t_{DON} 533µs OUT DOFF Envelope 1 Envelope 16 17056µs/data word OUT - Telegram pause Data word Data word — 17ms ——► T_{REF} = 62ms

Figure 6-9. Test Circuit


Figure 6-10. Application Circuit

7. Chip Dimensions

Figure 7-1. Chip Size in µm

Note: Pad coordinates are given for lower left corner of the pad in µm from the origin 0,0

Dimensions	Length inclusive scribe	1.16mm
	Width inclusive scribe	1.37mm
	Thickness	290µ ±5%
	Pads	$90\mu \times 90\mu$
	Fusing pads	$70\mu \times 70\mu$
Pad metallurgy	Material	AlCu/AlSiTi ⁽¹⁾
	Thickness	0.8µm
Finish	Material	Si ₃ N ₄ /SiO ₂
	Thickness	0.7/0.3µm

Note: 1. Value depends on manufacture location.

8. Ordering Information

Delivery: unsawn wafers (DDW) in box

Extended Type Number	PL ⁽²⁾	R _{PU} ⁽³⁾	D ⁽⁴⁾	Type ⁽⁵⁾	
T2526S0xx ⁽¹⁾ C-DDW	2	30	2179	Standard type: ≥ 10 pulses, enhanced sensibility, high data rate	
T2526S1xx ⁽¹⁾ C-DDW	1	30	2179	Standard type. 2 10 pulses, enhanced sensibility, high data rate	
T2526S2xx ⁽¹⁾ C-DDW	2	40	1404	Lamp type: ≥ 10 pulses, enhanced suppression of disturbances,	
T2526S3xx ⁽¹⁾ C-DDW	1	40	1404	secure data transmission	
T2526S6xx ⁽¹⁾ C-DDW	2	30	3415	Short burst type: ≥ 6 pulses, enhanced data rate	
T2526S7xx ⁽¹⁾ C-DDW	1	30	3415	Silort burst type. 2 0 puises, ermanced data rate	

Notes: 1. xx means the used carrier frequency value f₀ 30, 33, 36, 38, 40, 44 or 56kHz

- 2. Two pad layout versions (see Figure 8-1 and Figure 8-2) available for different assembly demand
- 3. Integrated pull-up resistor at pin OUT (see electrical characteristics)
- 4. Typical data transmission rate up to bit/s with $f_0 = 56$ kHz, $V_S = 5$ V (see Figure 6-8 on page 8)
- 5. On request: noise type, data rate type

8.1 Pad Layout

Figure 8-1. Pad Layout 1

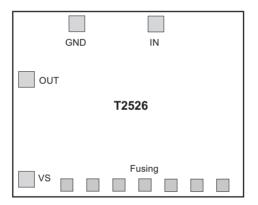
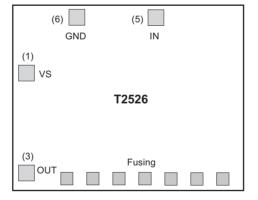



Figure 8-2. Pad Layout 2

9. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

document.	
Revision No.	History
4597J-AUTO-04/04	Put datasheet in the latest template
	Features on page 1 changed
	Section 1 "Description" on page 1 changed
	 Section 2 "Pin Description" on page 3 changed
4597I-AUTO-05/10	 Section 4 "Thermal Resistance" on page 3 deleted
45971-AUTO-05/10	 Section 4 "Electrical Characteristics, 3-V Operation" on pages 4 to 5 changed
	 Section 5"Electrical Characteristics, 5-V Operation" on pages 5 to 6 changed
	 Figure 6-5 "Data Transmission Rate, V_S = 3V" on page 8 changed
	 Figure 6-6 "Data Transmission Rate, V_S = 5V" on page 8 changed
4597H-AUTO-09/09	Put datasheet in the latest template
	Ordering Information table changed
	Features on page 1 changed
	Applications on page 1 changed
	Section 1 "Description" on page 1 changed
4597G-AUTO-10/06	• Section 5 "Electrical Characteristics, 3-V Operation" number 3.4 on page 3 changed
	 Section 6 "Electrical Characteristics, 5-V Operation" number 7.3 and 7.4 on page 5 changed
	 Section 9 "Ordering Information" on page 11 changed
4597F-AUTO-04/06	 Section 9 "Ordering Information" on page 11 changed
4597E-AUTO-04/06	Put datasheet in the latest template
4097 E-AUTO-04/00	Section 8 "Chip Dimensions" on page 10 changed
	Put datasheet in the latest template
4597D-AUTO-08/05	First page: Pb-free logo added
7001D-701O-00100	Page 11: Ordering Information changed
	• Page 2, 3, 5, 11, 13: SO8 deleted

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2014 Atmel Corporation. / Rev.: Rev.: 4597J-AUTO-04/14

Atmel Corporation

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.