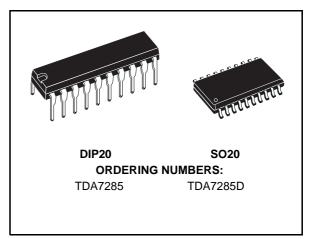
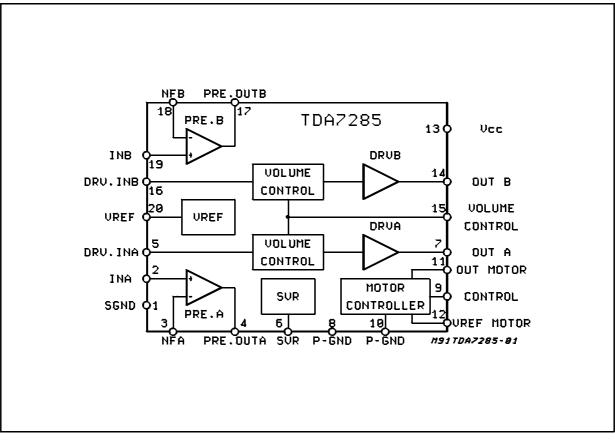


# TDA7285


# STEREO CASSETTE PLAYER AND MOTOR SPEED CONTROLLER

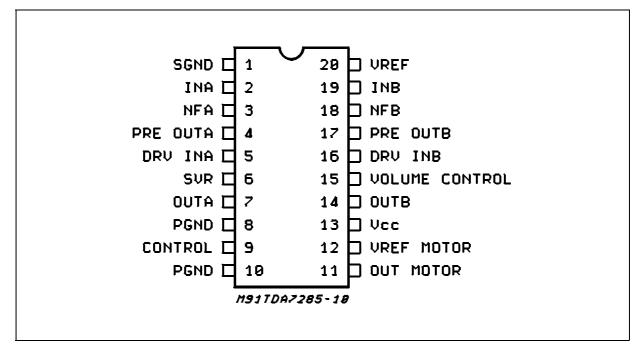
- WIDE OPERATING SUPPLY VOLTAGE (1.8V to 6V)
- HIGH OUTPUT POWER (30mW/32Ω/3V)
- LOW DISTORTION DC VOLUME CONTROL
- NO BOUCHEROT CELL
- LOW QUIESCENT CURRENT (15mA)
- NO INPUT CAPACITORS FOR PREAMPLIFI-ERS
- LOW MOTOR REFERENCE VOLTAGE (200mV)


#### DESCRIPTION

The TDA7285 is a monolithic integrated circuit designed for the portable players market and assembled in a plastic DIP20 and SO20. The internal functions are: preamplifier, DC volume con-

#### **BLOCK DIAGRAM**




trol, headphone driver and motor speed controller.



May 1997

#### TDA7285

#### **PIN CONNECTION** (Top view)



#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                            | Parameter                                       | Value      | Unit |
|-----------------------------------|-------------------------------------------------|------------|------|
| Vs                                | Supply Voltage                                  | 8          | V    |
| I <sub>Omax</sub>                 | Maximum Output Current                          | 70         | mA   |
| I <sub>m max</sub>                | Maximum Motor Current                           | 700        | mA   |
| Ptot                              | Total Power Dissipation T <sub>amb</sub> = 90°C | 0.9        | W    |
| T <sub>op</sub>                   | Operating Temperature                           | -20 to +70 | °C   |
| T <sub>stg</sub> , T <sub>j</sub> | Storage and Junction Temperature                | -40 to 150 | °C   |

### THERMAL DATA

| Symbol                | Description                         | SO20 | DIP20 | Unit |
|-----------------------|-------------------------------------|------|-------|------|
| R <sub>th</sub> j-amb | Thermal Resistance Junction-ambient | 150  | 100   | °C/W |

**DC CHARACTERISTICS** (T<sub>amb</sub> = 25°C; V<sub>S</sub> = 3V; R<sub>L</sub> = 32 $\Omega$  (Headphone) and R<sub>L</sub> = 10K $\Omega$  (Preamplifier); V<sub>i</sub> = 0; VOL. Control = V<sub>ref</sub>).

| Terminal No     | 1 | 2   | 3   | 4   | 5   | 6   | 7   | 8 | 9   | 10 | 11  | 12 | 13 | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|-----------------|---|-----|-----|-----|-----|-----|-----|---|-----|----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|
| Term. Volt. (V) | 0 | 1.5 | 1.5 | 1.5 | 1.5 | 2.7 | 1.4 | 0 | 2.8 | 0  | 1.6 | 3  | 3  | 1.4 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |

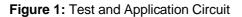


# **ELECTRICAL CHARACTERISTICS** (V<sub>S</sub> = 3V; R<sub>L</sub> = $32\Omega$ , Vol. Control = 2/3 V<sub>ref (pin 20)</sub>; T<sub>amb</sub> = $25^{\circ}$ C; f = 1KHz; unless otherwise specified

| Symbol         | Parameter                     | Test Condition | Min. | Тур. | Max. | Unit |
|----------------|-------------------------------|----------------|------|------|------|------|
| Vs             | Supply Range                  |                | 1.8  |      | 6    | V    |
| l <sub>d</sub> | Total Quiescent Drain Current |                |      | 15   | 22   | mA   |

#### PLAYBACK AMPLIFIER

| G <sub>vo</sub> | Open Loop Gain            |                                                                           |     | 70   |      | dB |
|-----------------|---------------------------|---------------------------------------------------------------------------|-----|------|------|----|
| Gv              | Close Loop Gain           |                                                                           |     | 33   |      | dB |
| Vo              | Output Voltage            | THD = 1%                                                                  | 600 | 750  |      | mV |
| THD             | Total Harmonic Distortion | V <sub>O</sub> = 330mVrms                                                 |     | 0.05 | 0.25 | %  |
| I <sub>b</sub>  | Bias Current              |                                                                           |     | 3    |      | μΑ |
| Ct              | Cross Talk                | $R_S = 2.2K\Omega; V_O = 330mVrms$                                        |     | 74   |      | dB |
| en              | Total Input Noise         | $R_S = 2.2K\Omega$ ; B = 22Hz to 22KHz                                    |     | 1.2  |      | μV |
| SVR1            | Ripple Rejection          | $R_S = 2.2K\Omega$ ; Vr = 100mVrms<br>f = 100Hz; C <sub>SVR</sub> = 100µF |     | 50   |      | dB |


#### HEADPHONE DRIVER

| V <sub>DC</sub> | Output DC Voltage         |                                                                         |    | 1.4 |   | V  |
|-----------------|---------------------------|-------------------------------------------------------------------------|----|-----|---|----|
| Po              | Output Power              | THD = 10%                                                               | 20 | 30  |   | mW |
| P <sub>01</sub> | Transient Output Power    | THD = 10% $R_L$ = 16 $\Omega$                                           |    | 50  |   | mW |
| Gv              | Close Loop Gain           | $P_0 = 5mW$                                                             |    | 31  |   | dB |
|                 | Volume Control range      |                                                                         | 66 | 75  |   | dB |
| THD             | Total Harmonic Distortion | $P_0 = 5mW$                                                             |    | 0.3 | 1 | %  |
| Ct              | Cross Talk                | $P_0 = 5 mW; R_S = 10 K\Omega$                                          |    | 50  |   | dB |
| SVR2            | Ripple Rejection          | $R_{S} = 600\Omega$ ; Vr = 100mV<br>f = 100Hz; C <sub>SVR</sub> = 100μF |    | 47  |   | dB |

#### MOTOR SPEED CONTROL

| V <sub>ref</sub>                                                                                         | Motor Reference Voltage (pin 12)                    |                                                                  | 0.18 | 0.20  | 0.22 | V    |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|------|-------|------|------|
| К                                                                                                        | Shunt Ratio                                         | I <sub>m</sub> = 100mA                                           | 45   | 50    | 55   | -    |
| V <sub>sat</sub>                                                                                         | Residual Voltage                                    | I <sub>m</sub> = 100mA                                           |      | 0.13  | 0.30 | V    |
| $\frac{\Delta  V_{\text{ref}}}{V_{\text{ref}}} /  \Delta  V_{\text{S}}$                                  | Line Regulation                                     | I <sub>m</sub> = 100mA;<br>V <sub>S</sub> = 1.8 to 6V            |      | 0.20  | 0.8  | %/V  |
| $\frac{\Delta K}{K} / \Delta V_S$                                                                        | Voltage Characteristics of Shunt<br>Ratio           | I <sub>m</sub> = 100mA;<br>V <sub>S</sub> = 1.8 to 6V            |      | 0.80  | 3    | %/V  |
| $\frac{\Delta V_{\text{ref}}}{V} / \Delta I_{\text{m}}$                                                  | Load Regulation                                     | I <sub>m</sub> = 30 to 200mA                                     |      | 0.015 | 0.08 | %/mA |
| $\frac{\frac{\Delta V_{\text{ref}}}{V} / \Delta I_{\text{m}}}{\frac{\Delta K}{K} / \Delta I_{\text{m}}}$ | Current Characteristics of Shunt Ratio              | I <sub>m</sub> = 30 to 200mA                                     |      | 0.03  | 0.1  | %/mA |
| $rac{\Delta V_{\text{ref}}}{V_{\text{ref}}} / \Delta T_{\text{amb}}$                                    | Temperature Characteristics of<br>Reference Voltage | $I_m = 100mA$<br>$T_{amb} = -20 \text{ to } +60^{\circ}\text{C}$ |      | 0.04  |      | %/°C |
| $\frac{\Delta  K}{K} /  \Delta  T_{amb}$                                                                 | Temperature Characteristics of Shunt Ratio          | $I_m = 100mA$<br>$T_{amb} = -20 \text{ to } +60^{\circ}\text{C}$ |      | 0.02  |      | %/°C |





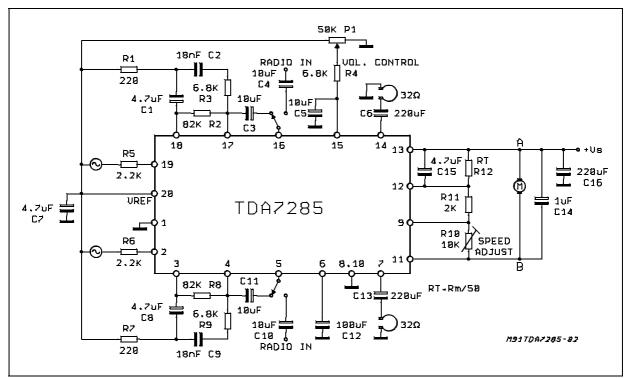
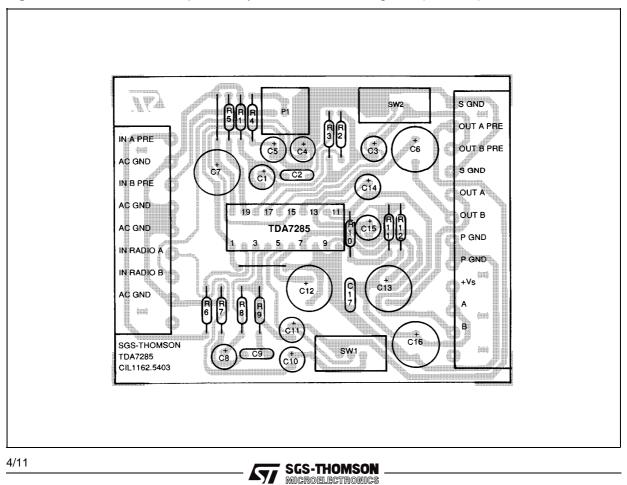
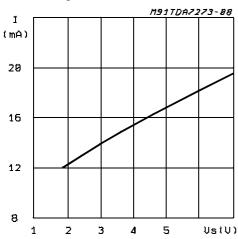




Figure 2: P.C. Board and Component Layout of the Circuit of Figure 2 (1:1 scale)





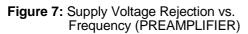
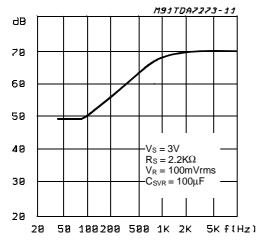




Figure 3: Quiescent Drain Current vs. Supply Voltage









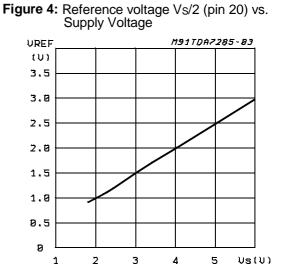
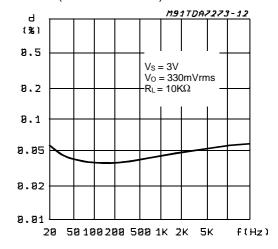
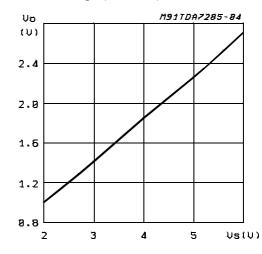
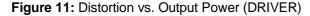



Figure 6: Distortion vs. Frequency (PREAMPLIFIER)



Figure 8: Quiescent Output Voltage vs. Supply Voltage (DRIVER)





(DRIVER) M91TDA7285-85 Gυ (dB) 32 30 Vs-3V RL=32Ω f=1KHz Рօ-Տՠ⊎ 28 26 30 100 300 1K ЗК 10K f(Hz)

Figure 9: Closed Loop Gain vs. Frequency



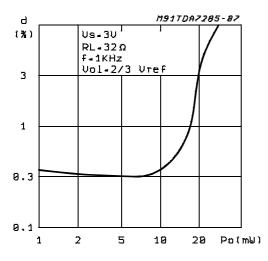
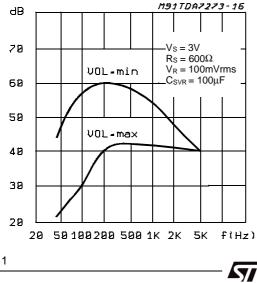
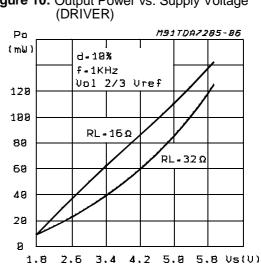
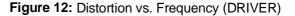






Figure 13: Supply Voltage Rejection vs. Frequency (DRIVER







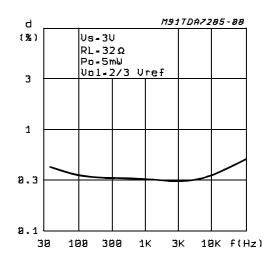



Figure 14: Volume Control (0dB = 10mW;  $V_S = 3V; R_{VOL} = 50K\Omega; R_L = 32\Omega;$ f = 1KHz) (DRIVER)

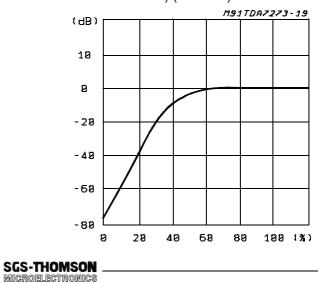



Figure 10: Output Power vs. Supply Voltage

Figure 15: Reference Voltage (Pin 12) vs. Supply Voltage (MOTOR)

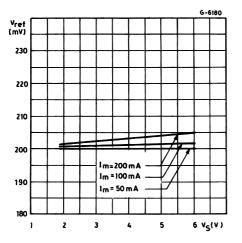



Figure 17: Sunt Ratio vs. Load Current (MOTOR)

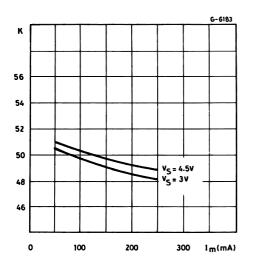



Figure 19: Speed Variations vs. Supply Voltage (MOTOR)

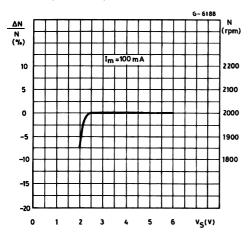



Figure 16: Shunt Ratio vs. Supply Voltage (MO-TOR)

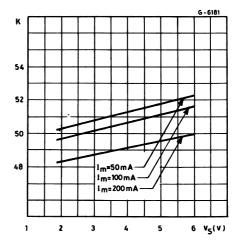
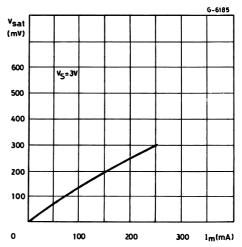
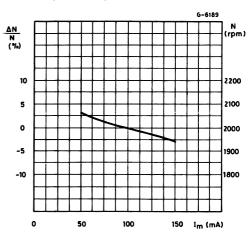
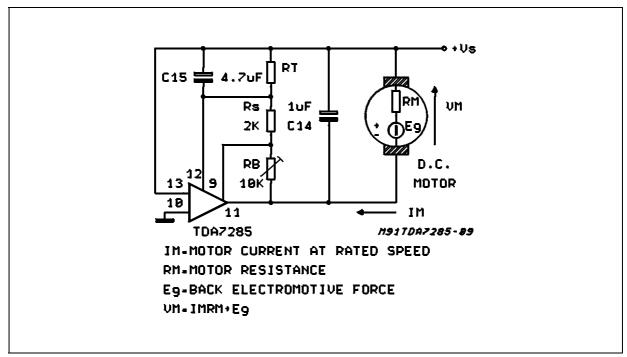



Figure 18: Saturation Voltage vs. Load Current (MOTOR)



Figure 20: Speed Variations vs. Motor Current (MOTOR)





#### **APPLICATION INFORMATION**

#### Figure 21.



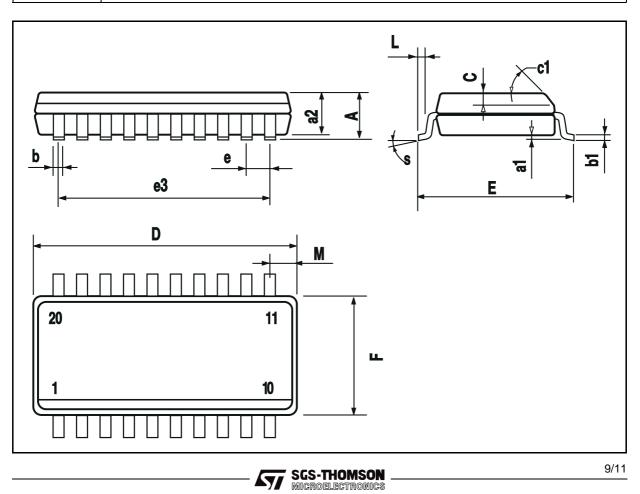
$$E_{g} = R_{T} I_{d} + I_{M} \left( \frac{R_{T}}{K} - R_{M} \right) + V_{ref}$$

$$\left[ 1 + \frac{R_{b}}{R_{S}} + \frac{R_{T}}{R_{S}} \left( 1 + \frac{1}{K} \right) \right]$$

 $R_S$  has to be adjusted so that the applied voltage  $V_M$  is suitable for a given motor, the speed is then linearly adjustable varing  $R_B$ .

The value  $\mathsf{R}_\mathsf{T}$  is calculated so that

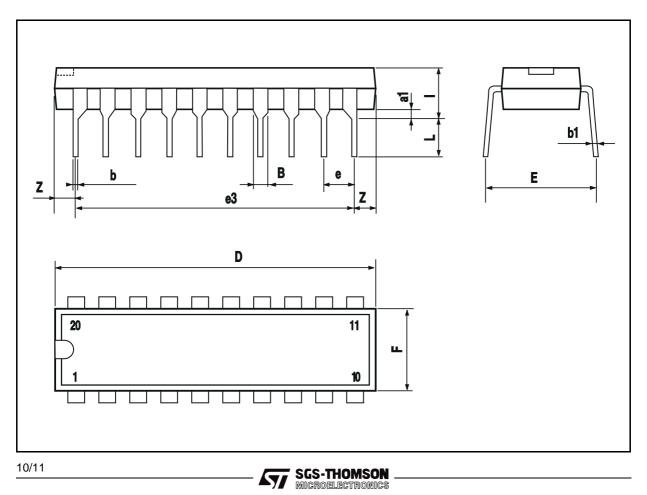
 $R_{T (max.)} > K_{(min.)} * R_{M (min.)}$ 


if  $R_{T (max.)} > K * R_M$ , instability may occur.

The values of C15 (4.7 $\mu$ F typ.) and C14 (1 $\mu$ F typ.) depend on the type of motor used. C15 adjusts WOW and flutter of the system. C14 suppresses motor spikes.



| DIM.  |      | mm        |       |       | inch  |       |  |  |  |
|-------|------|-----------|-------|-------|-------|-------|--|--|--|
| Diwi. | MIN. | TYP.      | MAX.  | MIN.  | TYP.  | MAX.  |  |  |  |
| А     |      |           | 2.65  |       |       | 0.104 |  |  |  |
| a1    | 0.1  |           | 0.3   | 0.004 |       | 0.012 |  |  |  |
| a2    |      |           | 2.45  |       |       | 0.096 |  |  |  |
| b     | 0.35 |           | 0.49  | 0.014 |       | 0.019 |  |  |  |
| b1    | 0.23 |           | 0.32  | 0.009 |       | 0.013 |  |  |  |
| С     |      | 0.5       |       |       | 0.020 |       |  |  |  |
| c1    |      | 45 (typ.) |       |       |       |       |  |  |  |
| D     | 12.6 |           | 13.0  | 0.496 |       | 0.512 |  |  |  |
| E     | 10   |           | 10.65 | 0.394 |       | 0.419 |  |  |  |
| е     |      | 1.27      |       |       | 0.050 |       |  |  |  |
| e3    |      | 11.43     |       |       | 0.450 |       |  |  |  |
| F     | 7.4  |           | 7.6   | 0.291 |       | 0.299 |  |  |  |
| L     | 0.5  |           | 1.27  | 0.020 |       | 0.050 |  |  |  |
| М     |      |           | 0.75  |       |       | 0.030 |  |  |  |
| S     |      | 8 (max.)  |       |       |       |       |  |  |  |


### SO20 PACKAGE MECHANICAL DATA



## TDA7285

### **DIP20 PACKAGE MECHANICAL DATA**

| DIM. |       | mm    |      |       | inch  |       |
|------|-------|-------|------|-------|-------|-------|
| 2    | MIN.  | TYP.  | MAX. | MIN.  | TYP.  | MAX.  |
| a1   | 0.254 |       |      | 0.010 |       |       |
| В    | 1.39  |       | 1.65 | 0.055 |       | 0.065 |
| b    |       | 0.45  |      |       | 0.018 |       |
| b1   |       | 0.25  |      |       | 0.010 |       |
| D    |       |       | 25.4 |       |       | 1.000 |
| E    |       | 8.5   |      |       | 0.335 |       |
| е    |       | 2.54  |      |       | 0.100 |       |
| e3   |       | 22.86 |      |       | 0.900 |       |
| F    |       |       | 7.1  |       |       | 0.280 |
| I    |       |       | 3.93 |       |       | 0.155 |
| L    |       | 3.3   |      |       | 0.130 |       |
| Z    |       |       | 1.34 |       |       | 0.053 |



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

