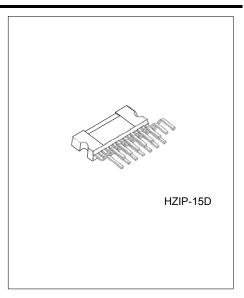
UTC UNISONIC TECHNOLOGIES CO., LTD

TDA7297

LINEAR INTEGRATED CIRCUIT

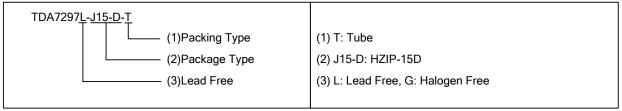
10+10W DUAL BRIDGE **AMPLIFIER**


DESCRIPTION

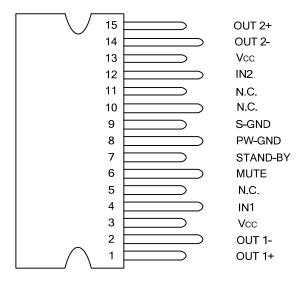
The UTC TDA7297 is a dual bridge amplifier, it uses UTC advanced technology to provide customers with wide supply voltage, stand-by function, mute function, thermal overload protection and short circuit protection, etc.

The UTC TDA7297 is suitable for TV and Portable Radio applications, etc.

FEATURES

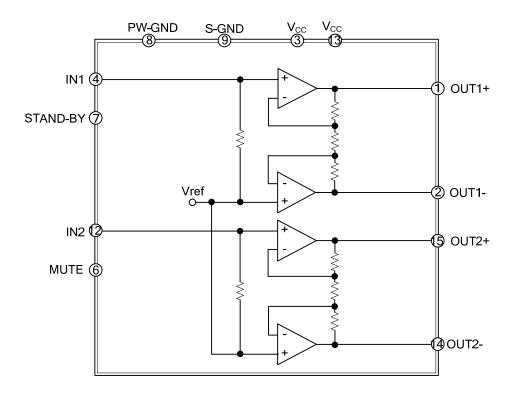

- * St-by and mute functions
- * OTP and short circuit protections
- * Work with a minimum external components
- * Wide supply voltage range (6.5V~18V)

ORDERING INFORMATION


Ordering	Number	Daalaasa	Packing	
Lead Free	Halogen Free	Package		
TDA7297L-J15-D-T	TDA7297G-J15-D-T	HZIP-15D	Tube	

Note: xx: Output Voltage, refer to Marking Information.

www.unisonic.com.tw 1 of 8


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT1+	Non-Inverting Output of Channel 1
2	OUT1-	Inverting Output of Channel 1
3	V _{CC}	Supply Voltage
4	IN1	Input of Channel 1
5	N.C.	Not Connected
6	MUTE	Mute Function Terminal
7	STAND-BY	Stand-by Function Terminal
8	PW-GND	Power Ground
9	S-GND	Signal Ground
10	N.C.	Not Connected
11	N.C.	Not Connected
12	IN2	Input of Channel 2
13	V_{CC}	Supply Voltage
14	OUT2-	Inverting Output of Channel 2
15	OUT2+	Non-Inverting Output of Channel 2

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	Vs	20	V
Output Peak Current (Internally Limited)	lo	2	Α
Total Power Dissipation (T _C =70°C)	P _{TOT}	30	W
Operating Temperature	T_OPR	0~70	°C
Junction Temperature	T_J	150	°C
Storage Temperature	T _{STG}	-40~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

DESCRIPTION	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	48	°C/W
Junction to Case	θ_{JC}	1.8	°C/W

■ ELECTRICAL CHARACTERISTICS

(V_{CC} =13V, R_L =8 Ω , f=1kHz, T_A =25 $^{\circ}$ C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Range	Vcc		6.5		18	V
Total Quiescent Current	I_q	R _L =∞		50	65	mA
Output Offset Voltage	Vos				120	mV
Output Power	Po	THD=10%	8.3	10		W
Total Harmania Distortion	THD	P _O =1W		0.1	0.3	%
Total Harmonic Distortion		P _O =0.1W~2W, f=100Hz~15kHz			1	%
Supply Voltage Rejection	SVR	f=100Hz V _R =0.5V	40	56		dB
Crosstalk	СТ		46	60		dB
Mute Attenuation	A _{MUTE}		60	80		dB
Thermal Threshold	Tw			150		°C
Closed Loop Voltage Gain	G _V		31	32	33	dB
Voltage Gain Matching	ΔG_V				0.5	dB
Input Resistance	Rı		25	30		kΩ
Mute Threshold	VT_{MUTE}	V _O =-30dB	2.3	2.9	4.1	V
ST-BY Threshold	VT _{ST-BY}		8.0	1.3	1.8	V
ST-BY Current V6=GND	I _{ST-BY}				100	μΑ
Total Output Naiga Valtage	e _N	A curve		150		μV
Total Output Noise Voltage		f=20Hz~20kHz		220	500	μV

■ APPLICATION SUGGESTION

STAND-BY AND MUTE FUNCTIONS

a. Microprocessor Application

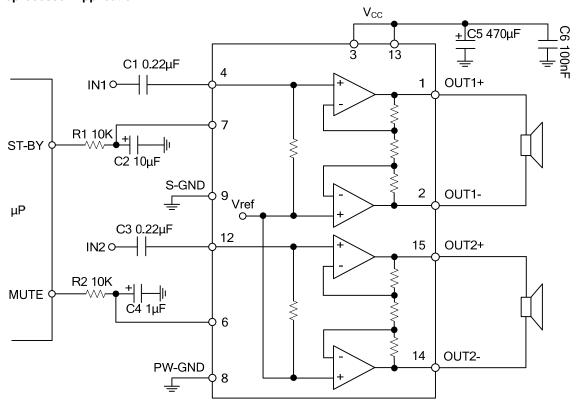


Fig. 1 Microprocessor Application

■ APPLICATION SUGGESTION(Cost.)

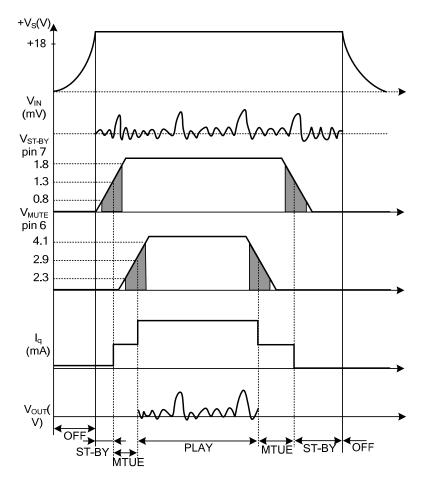


Fig. 2 Microprocessor Driving Signals

■ APPLICATION SUGGESTION(Cost.)

b. Low Cost Application

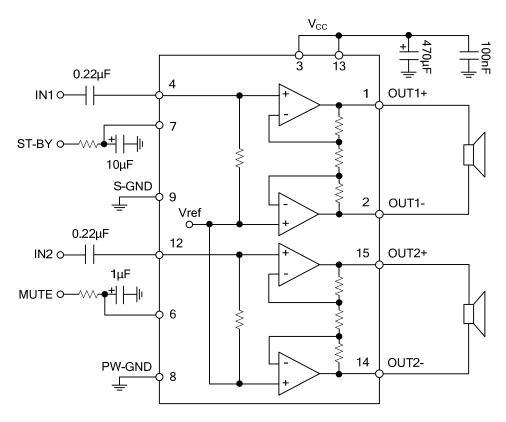
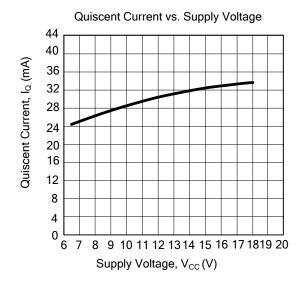
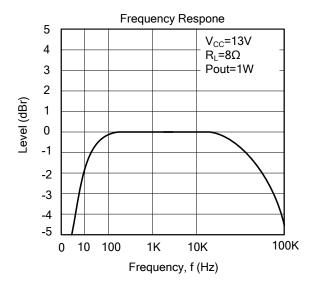
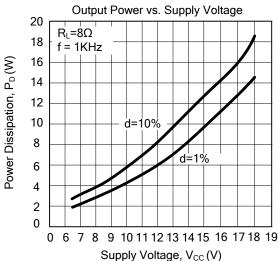





Fig. 3 Stand-alone Low-cost Application

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.