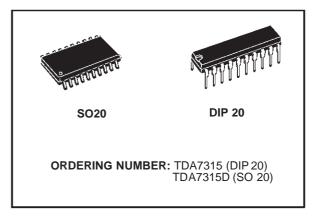


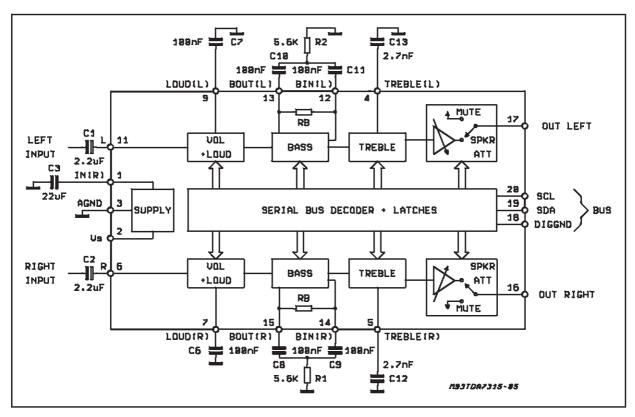
DIGITAL CONTROLLED AUDIO PROCESSOR


- 1 STEREO INPUT
- LOUDNESS FUNCTION
- VOLUME CONTROL IN 1.25dB STEPS
- TREBLE AND BASS CONTROL
- TWO SPEAKERS ATTENUATORS:
 - INDEPENDENT SPEAKERS CONTROL IN 1.25dB STEPS
 - INDEPENDENT MUTE FUNCTION
- ALL FUNCTIONS PROGRAMMABLE VIA SE-RIAL BUS

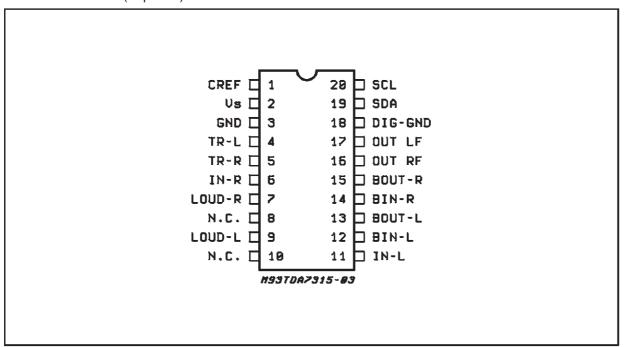
DESCRIPTION

The TDA7315 is a volume, tone (bass and treble) balance (Left/Right) processor for quality audio applications in car radio and Hi-Fi systems.

Control is accomplished by serial bus microprocessor interface.


The AC signal setting is obtained by resistor networks

and switches combined with operational amplifiers


Thanks to the used BIPOLAR/CMOS Technology, Low Distortion, Low Noise and DC stepping are obtained.

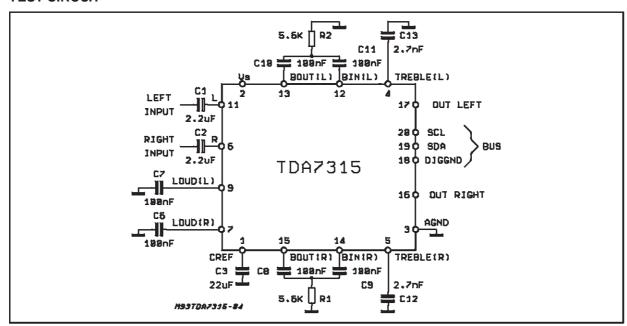
BLOCK DIAGRAM

July 1998 1/12

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter		SO 20	DIP 20	Unit
R _{th j-pins}	Thermal Resistance Junction-pins	Max.	150	150	°C/W


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.2	V
T _{amb}	Operating Ambient Temperature	-10 to 85	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	6	9	10	V
V_{CL}	Max. input signal handling	2			Vrms
THD	Total Harmonic Distortion V = 1Vrms f = 1KHz		0.01	0.1	%
S/N	Signal to Noise Ratio		106		dB
Sc	Channel Separation f = 1KHz		103		dB
	Volume Control 1.25dB step	-78.75		0	dB
	Bass and Treble Control 2db step	-14		+14	dB
	Balance Control 1.25dB step	-38.75		0	dB
	Mute Attenuation		100		dB

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (refer to the test circuit $T_{amb} = 25^{\circ}C$, $V_{S} = 9V$, $R_{L} = 10K\Omega$, $R_{G} = 600\Omega$, all controls flat (G = 0), f = 1KHz unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY						
Vs	Supply Voltage		6	9	10	V
I _S	Supply Current			8	11	mA
SVR	Ripple Rejection		60	80		dB
VOLUME C	ONTROL					
R _{IV}	Input Resistance		20	33	50	kΩ
C _{RANGE}	Control Range		70	75	80	dB
A _{VMIN}	Min. Attenuation		-1	0	1	dB
A _{VMAX}	Max. Attenuation		70	75	80	dB
A _{STEP}	Step Resolution		0.5	1.25	1.75	dB
E _A	Attenuation Set Error	Av = 0 to -20dB Av = -20 to -60dB	-1.25 -3	0	1.25 2	dB dB
E _T	Tracking Error				2	dB
V _{DC}	DC Steps	adjacent attenuation steps From 0dB to Av max		0 0.5	3 7.5	mV mV
SPEAKER /	ATTENUATORS					
C _{range}	Control Range		35	37.5	40	dB
S _{STEP}	Step Resolution		0.5	1.25	1.75	dB
E _A	Attenuation set error				1.5	dB
A _{MUTE}	Output Mute Attenuation		80	100		dB
V_{DC}	DC Steps	adjacent att. steps from 0 to mute		0 1	3 10	mV mV
BASS CON	TROL (1)					
Gb	Control Range	Max. Boost/cut	<u>+</u> 12	<u>+</u> 14	<u>+</u> 16	dB
B _{STEP}	Step Resolution		1	2	3	dB
R _B	Internal Feedback Resistance		34	44	58	ΚΩ

4

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
	ONTROL (1)					
Gt	Control Range	Max. Boost/cut	<u>+</u> 13	<u>+</u> 14	<u>+</u> 15	dB
T _{STEP}	Step Resolution		1	2	3	dB
AUDIO OU	TPUTS					
V _{OCL}	Clipping Level	d = 0.3%	2	2.5		Vrms
R_L	Output Load Resistance		2			ΚΩ
C_L	Output Load Capacitance				10	nF
R _{OUT}	Output resistance		30	75	120	Ω
V _{OUT}	DC Voltage Level		4.2	4.5	4.8	V
GENERAL						
eno	Output Noise	BW = 20-20KHz, flat output muted all gains = 0dB		2.5 5	15	μV μV
		A curve all gains = 0dB		3		μV
S/N	Signal to Noise Ratio	all gains = 0dB; V _O = 1Vrms		106		dB
d	Distortion	$A_V = 0, V_{IN} = 1 Vrms$ $A_V = -20 dB V_{IN} = 1 Vrms$ $V_{IN} = 0.3 Vrms$		0.01 0.09 0.04	0.1 0.3	% % %
Sc	Channel Separation left/right		80	103		dB
	Total Tracking error	A _V = 0 to -20dB -20 to -60 dB		0 0	1 2	dB dB
BUS INPUT	S					
V _{IL}	Input Low Voltage				1	V
V _{IH}	Input High Voltage		3			V
I _{IN}	Input Current		-5		+5	μΑ
Vo	Output Voltage SDA Acknowledge	I _O = 1.6mA			0.4	V

Note:

Figure 1: Loudness versus Volume Attenuation

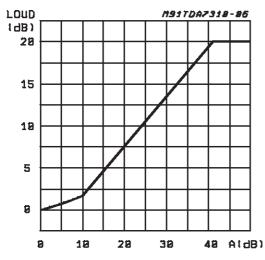
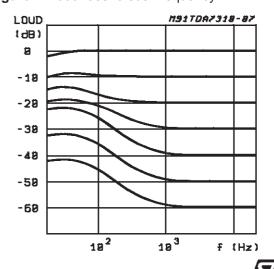
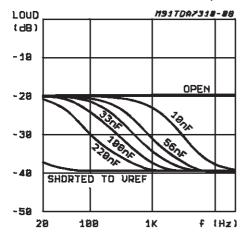




Figure 2: Loudness versus Frequency

⁽¹⁾ Bass and Treble response see attached diagram (fig.19). The center frequency and quality of the resonance behaviour can be choosen by the external circuitry. A standard first order bass response can be realized by a standard feedback network.

Figure 3: Loudness versus External Capacitors

$$\label{eq:lower_loss} \begin{split} & \text{LOUDNESS} \\ & \text{V}_S = 9 \text{V} \\ & \text{Volume} = \text{-40dB} \\ & \text{All other control flat} \\ & \text{C}_{\text{in}} = 2.2 \mu \text{F} \end{split}$$

 $C_{loud} = \dot{22}0nF$, 100nF, 33nF, 10nF, Open, Shorter to Vref

Figure 5: Signal to Noise Ratio vs. Volume Setting

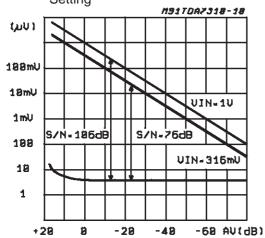


Figure 7: Distortion & Noise vs. Frequency

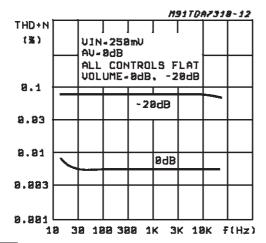


Figure 4: Noise vs. Volume/Gain Settings

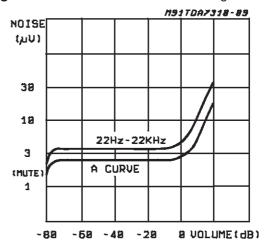


Figure 6: Distortion & Noise vs. Frequency

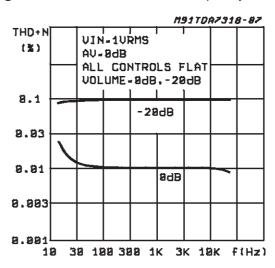
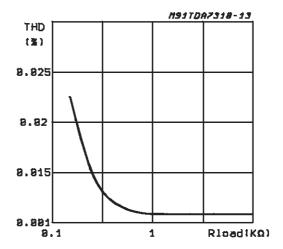



Figure 8: Distortion vs. Load Resistance

5

Figure 9: Channel Separation (L \rightarrow R) vs. Frequency

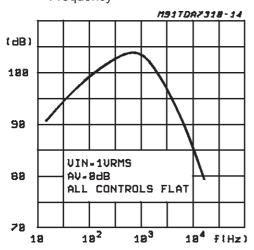


Figure 11: Output Clipping Level vs. Supply Voltage

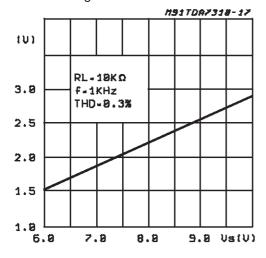
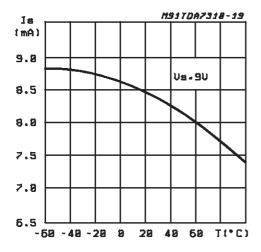



Figure 13: Supply Current vs. Temperature

Figure 10: Supply Voltage Rejection vs. Frequency

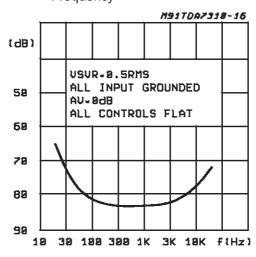


Figure 12: Quiescent Current vs. Supply Voltage

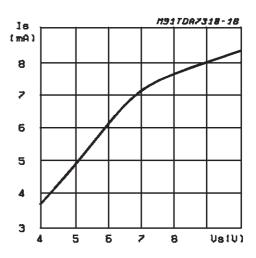
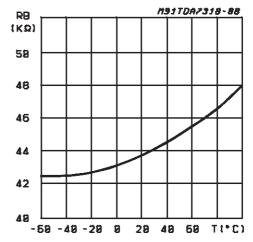
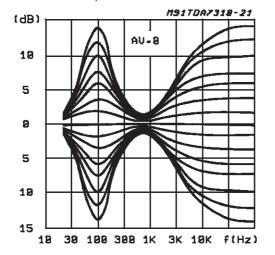
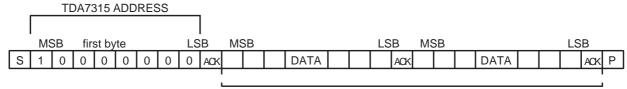


Figure 14: Bass Resistance vs. Temperature


Figure 15: Typical Tone Response (with the ext. components indicated in the test circuit)

SOFTWARE SPECIFICATION Interface Protocol

The interface protocol comprises:

- A start condition (S)
- A chip address byte, containing the TDA7315 address (the 8th bit of the byte must be 0). The TDA7315 must always acknowledge at the end of each transmitted byte.
- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

Data Transferred (N-bytes + Acknowledge)

ACK = Acknowledge

S = Start

P = Stop

MAX CLOCK SPEED 100kbits/s

SOFTWARE SPECIFICATION

Chip address = 80 Hex

1	0	0	0	0	0	0	0
MSE	3						LSB

DATA BYTES

MSB							LSB	FUNCTION
0	0	B2	B1	В0	A2	A1	A0	Volume control
1	0	0	B1	B0	A2	A1	A0	Speaker ATT L
1	0	1	B1	B0	A2	A1	A0	Speaker ATT R
0	1	0	X	X	L	X	X	Loudness
0	1	1	0	C3	C2	C1	C0	Bass control
0	1	1	1	C3	C2	C1	C0	Treble control

Ax = 1.25dB steps; Bx = 10dB steps; Cx = 2dB steps; X = don't care.

SOFTWARE SPECIFICATION (continued)

DATA BYTES (detailed description)

Volume

MSB							LSB	FUNCTION
0	0	B2	B1	В0	A2	A1	A0	Volume 1.25dB steps
					0	0	0	0
					0	0	1	-1.25
					0	1	0	-2.5
					0	1	1	-3.75
					1	0	0	-5
					1	0	1	-6.25
					1	1	0	-7.5
					1	1	1	-8.75
0	0	B2	B1	В0	A2	A1	A0	Volume 10dB steps
		0	0	0				0
		0	0	1				-10
		0	1	0				-20
		0	1	1				-30
		1	0	0				-40
		1	0	1				-50
		1	1	0				-60
		1	1	1				-70

For example a volume of -45dB is given by:

0 0 1 0 0 1 0 0

Speaker Attenuators

MSB							LSB	FUNCTION
1 1	0 0	0 1	B1 B1	B0 B0	A2 A2	A1 A1	A0 A0	Speaker L Speaker R
					0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1	0 -1.25 -2.5 -3.75 -5 -6.25 -7.5 -8.75
			0 0 1 1	0 1 0 1				0 -10 -20 -30
			1	1	1	1	1	Mute

For example attenuation of 25dB on speaker R is given by:

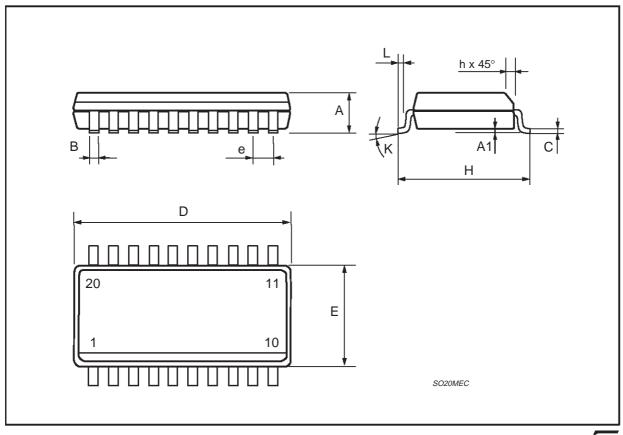
1 0 1 1 0 1 0 0

Loudness

MSB							LSB	FUNCTION
0	1	0	Χ	Χ	L	Χ	Χ	
					0			LOUDNESS ON
					1			LOUDNESS OFF

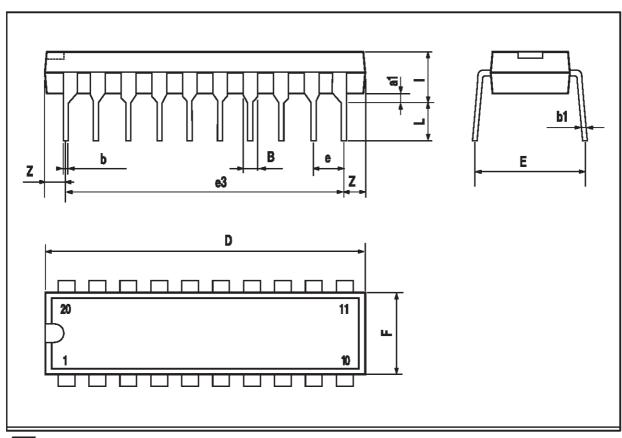
x = don't care For examples Loudness Off can be programmed by the following 8 bit string:

0 1 0 0 0 1 0 0


Bass and Treble

0	1 1	1	0 1	C3 C3	C2 C2	C1 C1	C0 C0	Bass Treble
				0	0	0	0	-14
				0	0	0	1	-12
				0	0	1	0	-10
				0	0	1	1	-8
				0	1	0	0	-6
				0	1	0	1	-4
				0	1	1	0	-2
				0	1	1	1	0
				1	1	1	1	0
				l i	i	1	0	2
				1	1	0	1	- 4
				1	1	0	0	6
				1	0	1	1	8
				1	0	1	0	10
				1	0	0	1	12
				1	0	0	0	14

C3 = Sign
For example Bass at -10dB is obtained by the following 8 bit string:
0 1 1 0 0 0 1 0


SO20 PACKAGE MECHANICAL DATA

DIM.		mm		inch			
J	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.35		2.65	0.093		0.104	
A1	0.1		0.3	0.004		0.012	
В	0.33		0.51	0.013		0.020	
С	0.23		0.32	0.009		0.013	
D	12.6		13	0.496		0.512	
Е	7.4		7.6	0.291		0.299	
е		1.27			0.050		
Н	10		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.4		1.27	0.016		0.050	
К			0 (min.)	8 (max.)			

DIP20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
Е		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.