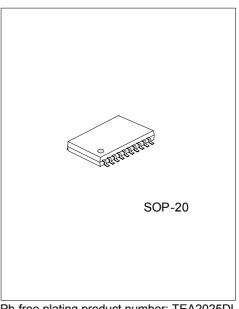
TEA2025D

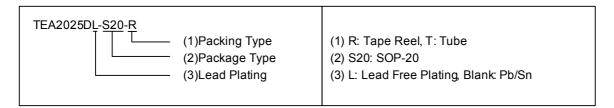
LINEAR INTEGRATED CIRCUIT

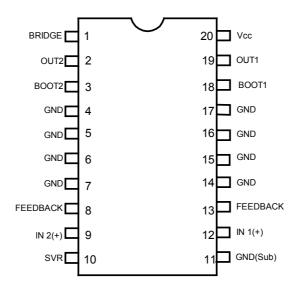

STEREO AUDIO AMPLIFIER

DESCRIPTION

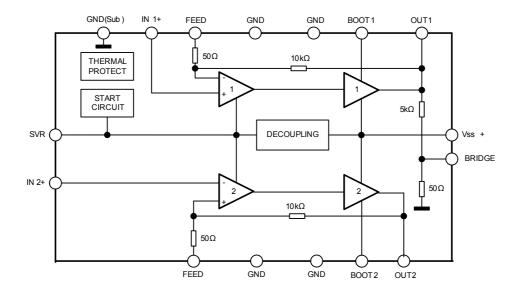
The UTC TEA2025D is a monolithic integrated circuit that intended for use as dual or bridge power audio amplifier portable radio cassette players.

FEATURES


- * Dual or bridge connection modes.
- * Few external components.
- * Supply voltage down to 3V.
- * High channel separation.
- * Very low switch on\off noise.
- * Max gain of 45dB with adjust external resistor.
- * Soft clipping.
- * Thermal protection.
- * 3V<V_{CC}<15V
- * P=2*1W, V_{CC} =6V, R_L =4 Ω
- * P=2*2.3W, V_{CC} =9V, R_L =4 Ω
- * P=2*0.1W, V_{CC} =3V, R_L =4 Ω


*Pb-free plating product number: TEA2025DL

ORDERING INFORMATION


Order	Number	Package	Dooking	
Normal	ormal Lead Free Plating		Packing	
TEA2025D-S20-R	TEA2025DL-S20-R	SOP-20	Tape Reel	
TEA2025D-S20-T	TEA2025DL-S20-T	SOP-20	Tube	

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{SS}	15	V
Output Peak Current	I _{O(PEAK)}	1.5	Α
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance Junction-case	θ_{JC}	15	°C/W
Thermal Resistance Junction-ambient	θ_{JA}	65	°C/W

Note: The θ_{JA} is measured with 4 cm² copper area heatsink.

■ **ELECTRICAL CHARACTERISTICS** (Ta=25°C, V_{CC}=9V, Stereo unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Voltage		V_{SS}			3		12	V
Quiescent Current	uiescent Current IQ				35	50	mA	
Quiescent Output Voltage		V_{OUT}				4.5		V
Voltage Gain		G_V	Stereo		43	45	47	dB
			Bridge		49	51	53	dB
Voltage Gain Difference		$\Delta G_{V(DIFF)}$					±1	dB
Input Impedance		Rı				30		kΩ
	$R_L=4\Omega$			V _{SS} =3V		0.1		
	$R_L=32\Omega$			v _{SS} -3v		0.02		
	$R_L=4\Omega$				0.7	1		
	$R_L=8\Omega$		Stereo 8 (per channel)	V _{SS} =6V		0.6		w
	$R_L=16\Omega$	Pout				0.25		
	$R_L=32\Omega$					0.13		
Output Power (d=10%)	$R_L=4\Omega$			V _{SS} =9V	1.7	2.3		
Output Power (u=10%)	$R_L=8\Omega$					1.3		
	$R_L=8\Omega$			V _{SS} =12V		2.4		
	$R_L=16\Omega$		Bridge	\/ -2\/		0.18		
	$R_L=32\Omega$			V _{SS} =3V		0.06		
	$R_L=4\Omega$	Pout		V _{SS} =6V		2.8		
	$R_L=8\Omega$					1.5		
	$R_L=8\Omega$			V _{SS} =9V		4.7		
Distortion	Stereo		\/=0\/: B:=40			0.3	1.5	%
Distortion Bridge		d	V_{SS} =9V; R_L =4 Ω			0.5		%
Supply Voltage Rejection		SVR	f=100Hz,V _R =0.5V,Rg=0		40	46		dB
Input Noise Voltage		EIX/INI)	Rg=0			1.5	3	mV
			Rg=104 Ω			3	6	mV
Cross-Talk		CT	f=1KHz, Rg=10KΩ		40	52		dB

APPLICATION INFORMATION

Input Capacitor

Input capacitor is PNP type allowing source to be referenced to ground.

In this way no input coupling capacitor is required. However, a series capacitor $(0.22\mu F)$ to the input side can be useful in case of noise due to variable resistor contact.

Bootstrap

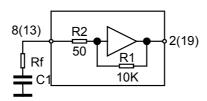
The bootstrap connection allows to increase the output swing.

The suggested value for the bootstrap capacitors ($100\mu F$) avoids a reduction of the output signal also at low frequencies and low supply voltage.

Voltage Gain Adjust

STEREO MODE

The voltage gain is determined by on-chip resistors R1 and R2 together with the external RfC1 series connected between pin 8(13) and ground. The frequency response is given approximated by:

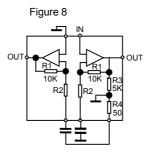

$$\frac{V_{OUT}}{V_{IN}} = \frac{R1}{Rf + R2 + \frac{1}{JWC1}}$$

With Rf=0,C1=100µF, the gain results 46dB with pole at f=32Hz

The purpose of Rfl is to reduce the gain. It is recommended to not reduce it under 36dB.

BRIDGE MODE

Figure 7



The bridge configuration is realized very easily thanks to an internal voltage divider which provides (at pin 1)the CH1 output signal after reduction. It is enough to connect pin8(inverting input of CH 2)with a capacitor to pin 1 and to connect to ground the pin 9.

The total gain of the bridge is given by:

$$\frac{V_{OUT}}{V_{IN}} = \frac{R1}{Rf + R2 + \frac{1}{JWC1}} (1 + \frac{R3}{R4} + \frac{R1}{R2 + R4 + \frac{1}{JWC1}})$$

and with the suggested values (C1=C2=100 μ F,Rf=0)means: Gv=52dB

With first pole at f=32Hz

■ APPLICATION INFORMATION(Cont.)

Output Capacitors.

The low cut off frequency due to output capacitor depending on the load is given by:

$$F_L = \frac{1}{2 \pi C_{OUT} * R_L}$$

With C_{OUT} 470 μF and R_L =4 ohm it means F_L =80Hz.

Stability

A good layout is recommended in order to avoid oscillations. In general, the designer must pay attention on the following points:

- -Short wires of components and short connections.
- -No ground loops.
- -Bypass of supply voltage with capacitors as nearest as possible to the supply I.C. pin. The low value (polyester) capacitors must have good temperature and frequency characteristics.
- -No sockets

The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that P_{OUT} (and therefore P_D) and Id are reduced.

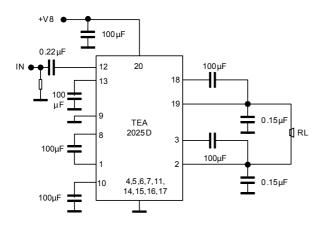
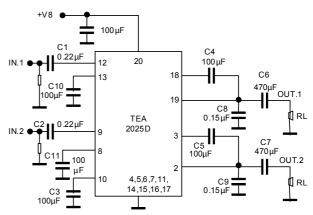
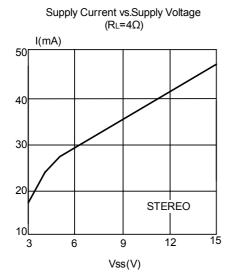
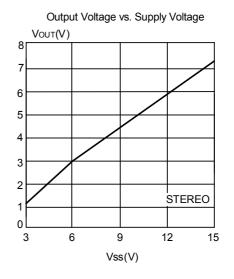
APPLICATION SUGGESTION

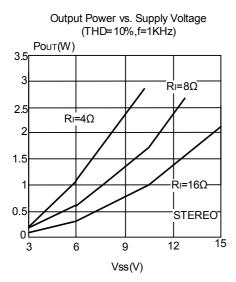
The recommended values of the components are those shown on stereo application circuit of Fig.2 different values can be used, the following table can help the designer.

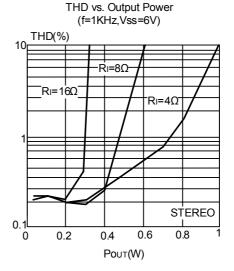
Component	Recommended	Purpose	Larger Than	Smaller Than
C1,C2	0.22µF	Input DC Decoupling in Case of Slider Contact Noise of Variable Resistor		
C3	100μF	Ripple Rejection		Degradation of SVR, Increase of THD at Low Frequency and Low Voltage
C4,C5	100µF	Bootstrap		
C6,C7	470µF	Output DC Decoupling		Increase of Low Frequency Cut-off
C8,C9	0.15µF	Frequency Stability		Danger of Oscillations
C10,C11	100μF	Inverting Input DC Decoupling		Increase of Low Frequency Cut-off

■ TYPICAL APPLICATION CIRCUIT

Figure 1:Bridge Application(Powerdip)


Figure 2:Stereo Application (Powerdip)



■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.