

TEA5767HN

Low-power FM stereo radio for handheld applications

Rev. 04 — 20 February 2006

Product data sheet

1. General description

The TEA5767HN is a single-chip electronically tuned FM stereo radio for low-voltage applications with fully integrated IF selectivity and demodulation. The radio is completely adjustment-free and only requires a minimum of small and low cost external components. The radio can be tuned to the European, US and Japanese FM bands.

2. Features

- High sensitivity due to integrated low-noise RF input amplifier
- FM mixer for conversion to IF of the US/Europe (87.5 MHz to 108 MHz) and Japanese (76 MHz to 91 MHz) FM band
- Preset tuning to receive Japanese TV audio up to 108 MHz
- RF Automatic Gain Control (AGC) circuit
- LC tuner oscillator operating with low cost fixed chip inductors
- FM IF selectivity performed internally
- No external discriminator needed due to fully integrated FM demodulator
- Crystal reference frequency oscillator; the oscillator operates with a 32.768 kHz clock crystal or with a 13 MHz crystal and with an externally applied 6.5 MHz reference frequency
- PLL synthesizer tuning system
- I²C-bus and 3-wire bus, selectable via pin BUSMODE
- 7-bit IF counter output via the bus
- 4-bit level information output via the bus
- Soft mute
- Signal dependent mono to stereo blend [Stereo Noise Cancelling (SNC)]
- Signal dependent High Cut Control (HCC)
- Soft mute, SNC and HCC can be switched off via the bus
- Adjustment-free stereo decoder
- Autonomous search tuning function
- Standby mode
- Two software programmable ports
- Bus enable line to switch the bus input and output lines into 3-state mode

Low-power FM stereo radio for handheld applications

3. Quick reference data

Table 1. Quick reference data

 $V_{CCA} = V_{CC(VCO)} = V_{CCD}$; AC values are given in RMS; for V_{RF} the EMF value is given; unless otherwise specified.

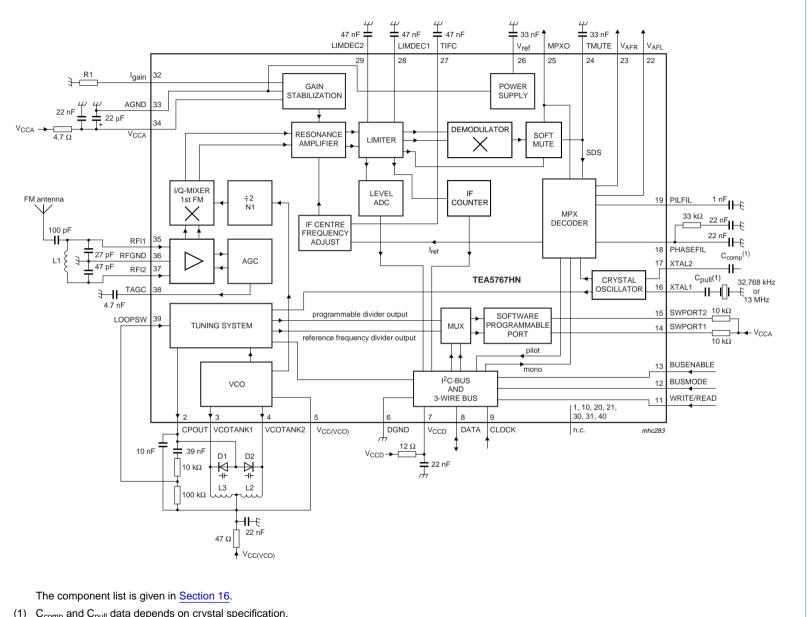
Oli ici wise	орества.					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CCA}	analog supply voltage		2.5	3.0	5.0	V
V _{CC(VCO)}	voltage controlled oscillator supply voltage		2.5	3.0	5.0	V
V_{CCD}	digital supply voltage		2.5	3.0	5.0	V
I _{CCA}	analog supply	operating; V _{CCA} = 3 V	6.0	8.4	10.5	mA
	current	Standby mode; $V_{CCA} = 3 \text{ V}$	-	3	6	μΑ
I _{CC(VCO)}	voltage controlled oscillator supply	operating; $V_{VCOTANK1} = V_{VCOTANK2} = 3 \text{ V}$	560	750	940	μΑ
	current	Standby mode; $V_{VCOTANK1} = V_{VCOTANK2} = 3 \text{ V}$	-	1	2	μΑ
I _{CCD}	digital supply current	operating; V _{CCD} = 3 V	2.1	3.0	3.9	mΑ
		Standby mode; $V_{CCD} = 3 \text{ V}$				
		bus enable line HIGH	30	56	80	μΑ
		bus enable line LOW	11	19	26	μΑ
f _{FM(ant)}	FM input frequency		76	-	108	MHz
T_{amb}	ambient temperature	$V_{CCA} = V_{CC(VCO)} = V_{CCD} =$ 2.5 V to 5 V	-10	-	+75	°C
FM overa	II system parameter	s; see <u>Figure 13</u>				
V_{RF}	RF sensitivity input voltage	$f_{RF} = 76$ MHz to 108 MHz; $\Delta f = 22.5$ kHz; $f_{mod} = 1$ kHz; (S+N)/N = 26 dB; de-emphasis = 75 μ s; L = R; $B_{AF} = 300$ Hz to 15 kHz	-	2	3.5	μV
S ₋₂₀₀	low side 200 kHz selectivity	$\Delta f = -200 \text{ kHz};$ $f_{tune} = 76 \text{ MHz to } 108 \text{ MHz}$	<u>11</u> 32	36	-	dB
S ₊₂₀₀	high side 200 kHz selectivity	Δf = +200 kHz; f_{tune} = 76 MHz to 108 MHz	[1] 39	43	-	dB
V_{AFL}	left audio frequency output voltage	V_{RF} = 1 mV; L = R; Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s	60	75	90	mV
V_{AFR}	right audio frequency output voltage	V_{RF} = 1 mV; L = R; Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s	60	75	90	mV

Low-power FM stereo radio for handheld applications

Table 1. Quick reference data ...continued

 $V_{CCA} = V_{CC(VCO)} = V_{CCD}$; AC values are given in RMS; for V_{RF} the EMF value is given; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
(S+N)/N	maximum signal plus noise-to-noise ratio	V_{RF} = 1 mV; L = R; Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s; B_{AF} = 300 Hz to 15 kHz	54	60	-	dB
α _{cs} (stereo)	stereo channel separation	V_{RF} = 1 mV; R = L = 0 or R = 0 and L = 1 including 9 % pilot; Δf = 75 kHz; f_{mod} = 1 kHz; data byte 3 bit 3 = 0; data byte 4 bit 1 = 1	24	30	-	dB
THD	total harmonic distortion	$V_{RF} = 1$ mV; L = R; $\Delta f = 75$ kHz; $f_{mod} = 1$ kHz; de-emphasis = 75 μ s	-	0.4	1	%


^[1] Low side and high side selectivity can be switched by changing the mixer from high side to low side LO

4. Ordering information

Table 2. Ordering information

Type number	Package				
	Name	Description	Version		
TEA5767HN	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6\times6\times0.85$ mm	SOT618-1		

9 **Block diagram**

(1) C_{comp} and C_{pull} data depends on crystal specification.

Fig 1. Block diagram

© Koninklijke Philips Electronics N.V. 2006. All rights reserved

Product data sheet

Rev.

2

20 February 2006


TEA5767HN_4

TEA5767HN

Low-power FM stereo radio for handheld applications

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
Syllibol	FIII	Description
n.c.	1	not connected
CPOUT	2	charge pump output of synthesizer PLL
VCOTANK1	3	voltage controlled oscillator tuned circuit output 1
VCOTANK2	4	voltage controlled oscillator tuned circuit output 2
V _{CC(VCO)}	5	voltage controlled oscillator supply voltage
DGND	6	digital ground
V _{CCD}	7	digital supply voltage
DATA	8	bus data line input/output
CLOCK	9	bus clock line input
n.c.	10	not connected
WRITE/READ	11	write/read control input for the 3-wire bus
BUSMODE	12	bus mode select input
BUSENABLE	13	bus enable input
SWPORT1	14	software programmable port 1
SWPORT2	15	software programmable port 2
XTAL1	16	crystal oscillator input 1

Low-power FM stereo radio for handheld applications

 Table 3.
 Pin description ...continued

Table 5. Till a	Cooription	onunada
Symbol	Pin	Description
XTAL2	17	crystal oscillator input 2
PHASEFIL	18	phase detector loop filter
PILFIL	19	pilot detector low-pass filter
n.c.	20	not connected
n.c.	21	not connected
V_{AFL}	22	left audio frequency output voltage
V_{AFR}	23	right audio frequency output voltage
TMUTE	24	time constant for soft mute
MPXO	25	FM demodulator MPX signal output
V_{ref}	26	reference voltage
TIFC	27	time constant for IF center adjust
LIMDEC1	28	decoupling IF limiter 1
LIMDEC2	29	decoupling IF limiter 2
n.c.	30	not connected
n.c.	31	not connected
I _{gain}	32	gain control current for IF filter
AGND	33	analog ground
V_{CCA}	34	analog supply voltage
RFI1	35	RF input 1
RFGND	36	RF ground
RFI2	37	RF input 2
TAGC	38	time constant RF AGC
LOOPSW	39	switch output of synthesizer PLL loop filter
n.c.	40	not connected

7. Functional description

7.1 Low-noise RF amplifier

The Low Noise Amplifier (LNA) input impedance together with the LC RF input circuit defines an FM band filter. The gain of the LNA is controlled by the RF AGC circuit.

7.2 FM mixer

The FM quadrature mixer converts the FM RF (76 MHz to 108 MHz) to an IF of 225 kHz.

7.3 VCO

The varactor tuned LC VCO provides the Local Oscillator (LO) signal for the FM quadrature mixer. The VCO frequency range is 150 MHz to 217 MHz.

Low-power FM stereo radio for handheld applications

7.4 Crystal oscillator

The crystal oscillator can operate with a 32.768 kHz clock crystal or a 13 MHz crystal. The temperature drift of standard 32.768 kHz clock crystals limits the operational temperature range from -10 °C to +60 °C.

The PLL synthesizer can be clocked externally with a 32.768 kHz, a 6.5 MHz or a 13 MHz signal via pin XTAL2.

The crystal oscillator generates the reference frequency for:

- The reference frequency divider for the synthesizer PLL
- The timing for the IF counter
- The free-running frequency adjustment of the stereo decoder VCO
- The center frequency adjustment of the IF filters

7.5 PLL tuning system

The PLL synthesizer tuning system is suitable to operate with a 32.768 kHz or a 13 MHz reference frequency generated by the crystal oscillator or applied to the IC from an external source. The synthesizer can also be clocked via pin XTAL2 at 6.5 MHz. The PLL tuning system can perform an autonomous search tuning function.

7.6 RF AGC

The RF AGC prevents overloading and limits the amount of intermodulation products created by strong adjacent channels.

7.7 IF filter

Fully integrated IF filter.

7.8 FM demodulator

The FM quadrature demodulator has an integrated resonator to perform the phase shift of the IF signal.

7.9 Level voltage generator and analog-to-digital converter

The FM IF analog level voltage is converted to 4 bits digital data and output via the bus.

7.10 IF counter

The IF counter outputs a 7-bit count result via the bus.

7.11 Soft mute

The low-pass filtered level voltage drives the soft mute attenuator at low RF input levels. The soft mute function can be switched off via the bus.

7.12 MPX decoder

The PLL stereo decoder is adjustment-free. The stereo decoder can be switched to mono via the bus.

TEA5767HN_4

Low-power FM stereo radio for handheld applications

7.13 Signal dependent mono to stereo blend

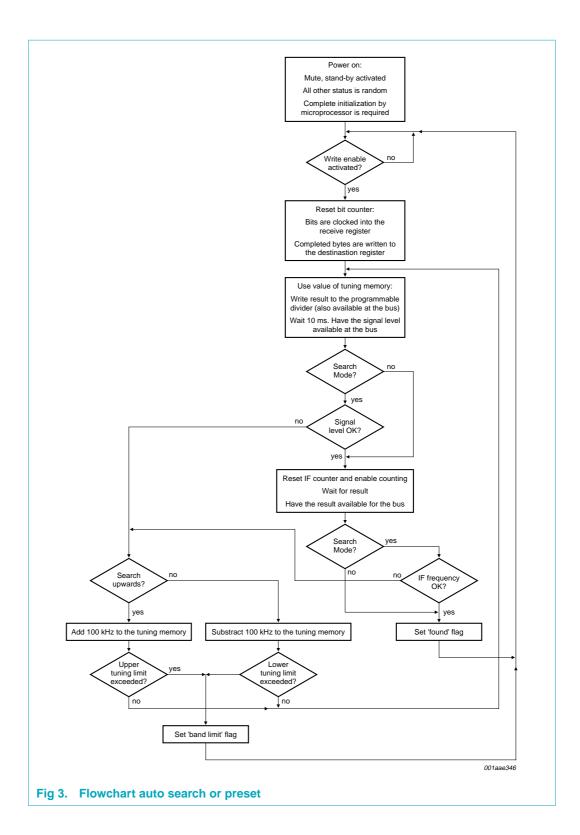
With a decreasing RF input level the MPX decoder blends from stereo to mono to limit the output noise. The continuous mono to stereo blend can also be programmed via the bus to an RF level depending switched mono to stereo transition. Stereo Noise Cancelling (SNC) can be switched off via the bus.

7.14 Signal dependent AF response

The audio bandwidth will be reduced with a decreasing RF input level. This function can be switched off via the bus.

7.15 Software programmable ports

Two software programmable ports (open-collector) can be addressed via the bus.


The port 1 (pin SWPORT1) function can be changed with write data byte 4 bit 0 (see Table 13). Pin SWPORT1 is then output for the ready flag of read byte 1.

7.16 I²C-bus and 3-wire bus

The 3-wire bus and the I²C-bus operate with a maximum clock frequency of 400 kHz.

Before any READ or WRITE operation the pin BUSENABLE has to be HIGH for at least 10 μ s.

The I²C-bus mode is selected when pin BUSMODE is LOW, when pin BUSMODE is HIGH the 3-wire bus mode is selected.

Low-power FM stereo radio for handheld applications

8. I²C-bus, 3-wire bus and bus-controlled functions

8.1 I²C-bus specification

Information about the I²C-bus can be found in the brochure "The I²C-bus and how to use it" (order number 9398 393 40011).

The standard I²C-bus specification is expanded by the following definitions:

IC address: 110 0000b

Structure of the I²C-bus logic: slave transceiver

Subaddresses are not used

The maximum LOW-level input and the minimum HIGH-level input are specified to 0.2V_{CCD} and 0.45V_{CCD} respectively.

The pin BUSMODE must be connected to ground to operate the IC with the I²C-bus.

Remark: The I²C-bus operates at a maximum clock frequency of 400 kHz. It is not allowed to connect the IC to an I²C-bus operating at a higher clock rate.

8.1.1 Data transfer

Data sequence: address, byte 1, byte 2, byte 3, byte 4 and byte 5 (the data transfer has to be in this order). The LSB = 0 of the address indicates a WRITE operation to the TEA5767HN.

Bit 7 of each byte is considered as the MSB and has to be transferred as the first bit of the byte.

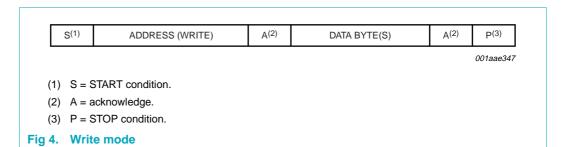
The data becomes valid bitwise at the appropriate falling edge of the clock. A STOP condition after any byte can shorten transmission times.

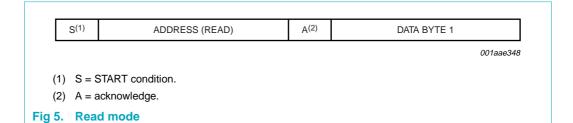
When writing to the transceiver by using the STOP condition before completion of the whole transfer:

- The remaining bytes will contain the old information
- If the transfer of a byte is not completed, the new bits will be used, but a new tuning cycle will not be started

The IC can be switched into a low current Standby mode with the standby bit; the bus is then still active. The standby current can be reduced by deactivating the bus interface (pin BUSENABLE LOW). If the bus interface is deactivated (pin BUSENABLE LOW) without the Standby mode being programmed, the IC maintains normal operation, but is isolated from the bus lines.

The software programmable output (SWPORT1) can be programmed to operate as a tuning indicator output. As long as the IC has not completed a tuning action, pin SWPORT1 remains LOW. The pin becomes HIGH, when a preset or search tuning is completed or when a band limit is reached.


The reference frequency divider of the synthesizer PLL is changed when the MSB in byte 5 is set to logic 1. The tuning system can then be clocked via pin XTAL2 at 6.5 MHz.


Low-power FM stereo radio for handheld applications

8.1.2 Power-on reset

At Power-on reset the mute is set, all other bits are set to LOW. To initialize the IC all bytes have to be transferred.

8.2 I²C-bus protocol

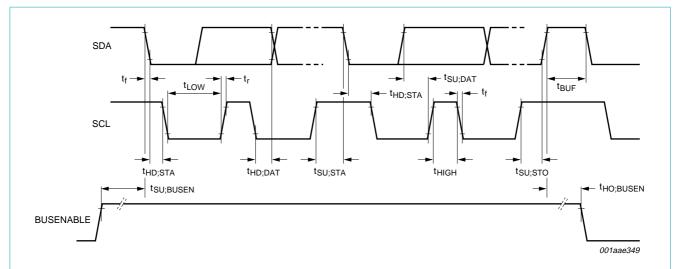


Table 4. IC address byte

IC address							
1	1	0	0	0	0	0	R/W[1]

- [1] Read or write mode:
 - a) 0 = write operation to the TEA5767HN.
 - b) 1 = read operation from the TEA5767HN.

Low-power FM stereo radio for handheld applications

 t_f = fall time of both SDA and SCL signals: $20 + 0.1C_b < t_f < 300$ ns, where C_b = capacitive load on bus line in pF.

 t_r = rise time of both SDA and SCL signals: $20 + 0.1C_b < t_f < 300$ ns, where C_b = capacitive load on bus line in pF.

t_{HD:STA} = hold time (repeated) START condition. After this period, the first clock pulse is generated: > 600 ns.

t_{HIGH} = HIGH period of the SCL clock: > 600 ns.

t_{SU:STA} = set-up time for a repeated START condition: > 600 ns.

 $t_{HD;DAT}$ = data hold time: 300 ns < $t_{HD;DAT}$ < 900 ns.

Remark: 300 ns lower limit is added because the ASIC has no internal hold time for the SDA signal.

 $t_{SU:DAT}$ = data set-up time: $t_{SU:DAT}$ > 100 ns. If ASIC is used in a standard mode I²C-bus system, $t_{SU:DAT}$ > 250 ns.

 $t_{SU;STO}$ = set-up time for STOP condition: > 600 ns.

 t_{BUF} = bus free time between a STOP and a START condition: > 600 ns.

 C_b = capacitive load of one bus line: < 400 pF.

 $t_{SU;BUSEN}$ = bus enable set-up time: $t_{SU;BUSEN}$ > 10 μs .

 $t_{HO;BUSEN}$ = bus enable hold time: $t_{HO;BUSEN}$ > 10 μs .

Fig 6. I²C-bus timing diagram

8.3 3-wire bus specification

The 3-wire bus controls the write/read, clock and data lines and operates at a maximum clock frequency of 400 kHz.

Hint: By using the standby bit the IC can be switched into a low current Standby mode. In Standby mode the IC must be in the WRITE mode. When the IC is switched to READ mode, during standby, the IC will hold the data line down. The standby current can be reduced by deactivating the bus interface (pin BUSENABLE LOW). If the bus interface is deactivated (pin BUSENABLE LOW) without the Standby mode being programmed, the IC maintains normal operation, but is isolated from the clock and data line.

8.3.1 Data transfer

Data sequence: byte 1, byte 2, byte 3, byte 4 and byte 5 (the data transfer has to be in this order).

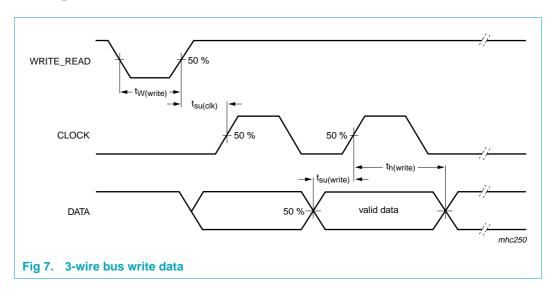
A positive edge at pin WRITE/READ enables the data transfer into the IC. The data has to be stable at the positive edge of the clock. Data may change while the clock is LOW and is written into the IC on the positive edge of the clock. Data transfer can be stopped after the transmission of new tuning information with the first two bytes or after each following byte.

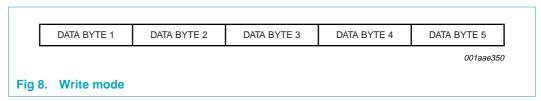
Low-power FM stereo radio for handheld applications

A negative edge at pin WRITE/READ enables the data transfer from the IC. The WRITE/READ pin changes while the clock is LOW. With the negative edge at pin WRITE/READ the MSB of the first byte occurs at pin DATA.

The bits are shifted on the negative clock edge to pin DATA and can be read on the positive edge.

To do two consecutive read or write actions, pin WRITE/READ has to be toggled for at least one clock period. When a search tuning request is sent, the IC autonomously starts searching the FM band; the search direction and search stop level can be selected. When a station with a field strength equal to or greater than the stop level is found, the tuning system stops and the ready flag bit is set to HIGH. When, during search, a band limit is reached, the tuning system stops at the band limit and the band limit flag bit is set to HIGH. The ready flag is also set to HIGH in this case.


The software programmable output (SWPORT1) can be programmed to operate as a tuning indicator output. As long as the IC has not completed a tuning action, pin SWPORT1 remains LOW. The pin becomes HIGH, when a preset or search tuning is completed or when a band limit is reached.


The reference frequency divider of the synthesizer PLL is changed when the MSB in byte 5 is set to logic 1. The tuning system can then be clocked via pin XTAL2 at 6.5 MHz.

8.3.2 Power-on reset

At Power-on reset the mute is set, all other bits are random. To initialize the IC all bytes have to be transferred.

8.4 Writing data

TEA5767HN_4

© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Low-power FM stereo radio for handheld applications

Table 5.	Format	of 1st	data	byte
----------	--------	--------	------	------

7 (MSB)	6	5	4	3	2	1	0 (LSB)
MUTE	SM	PLL13	PLL12	PLL11	PLL10	PLL9	PLL8

Table 6. Description of 1st data byte bits

Bit	Symbol	Description
7	MUTE	if MUTE = 1 then L and R audio are muted; if MUTE = 0 then L and R audio are not muted
6	SM	Search mode: if SM = 1 then in search mode; if SM = 0 then not in search mode
5 to 0	PLL[13:8]	setting of synthesizer programmable counter for search or preset

Table 7. Format of 2nd data byte

7 (MSB)	6	5	4	3	2	1	0 (LSB)
PLL7	PLL6	PLL5	PLL4	PLL3	PLL2	PLL1	PLL0

Table 8. Description of 2nd data byte bits

Bit	Symbol	Description
7 to 0	PLL[7:0]	setting of synthesizer programmable counter for search or preset

Table 9. Format of 3rd data byte

7 (MSB)	6	5	4	3	2	1	0 (LSB)
SUD	SSL1	SSL0	HLSI	MS	MR	ML	SWP1

Table 10. Description of 3rd data byte bits

Bit	Symbol	Description
7	SUD	Search Up/Down: if SUD = 1 then search up; if SUD = 0 then search down
6 and 5	SSL[1:0]	Search Stop Level: see Table 11
4	HLSI	High/Low Side Injection: if HLSI = 1 then high side LO injection; if HLSI = 0 then low side LO injection
3	MS	Mono to Stereo: if $MS = 1$ then forced mono; if $MS = 0$ then stereo ON
2	MR	Mute Right: if MR = 1 then the right audio channel is muted and forced mono; if MR = 0 then the right audio channel is not muted
1	ML	Mute Left: if ML = 1 then the left audio channel is muted and forced mono; if ML = 0 then the left audio channel is not muted
0	SWP1	Software programmable port 1: if SWP1 = 1 then port 1 is HIGH; if SWP1 = 0 then port 1 is LOW

Table 11. Search stop level setting

SSL1	SSL0	Search stop level
0	0	not allowed in search mode
0	1	low; level ADC output = 5
1	0	mid; level ADC output = 7
1	1	high; level ADC output = 10

Low-power FM stereo radio for handheld applications

Table 12. Format of 4th data byte

7 (MSB)	6	5	4	3	2	1	0 (LSB)
SWP2	STBY	BL	XTAL	SMUTE	HCC	SNC	SI

Table 13. Description of 4th data byte bits

Bit	Symbol	Description
7	SWP2	Software programmable port 2: if SWP2 = 1 then port 2 is HIGH; if SWP2 = 0 then port 2 is LOW
6	STBY	Standby: if STBY = 1 then in Standby mode; if STBY = 0 then not in Standby mode
5	BL	Band Limits: if BL = 1 then Japanese FM band; if BL = 0 then US/Europe FM band
4	XTAL	Clock frequency: see Table 16
3	SMUTE	Soft Mute: if SMUTE = 1 then soft mute is ON; if SMUTE = 0 then soft mute is OFF
2	HCC	High Cut Control: if HCC = 1 then high cut control is ON; if HCC = 0 then high cut control is OFF
1	SNC	Stereo Noise Cancelling: if SNC = 1 then stereo noise cancelling is ON; if SNC = 0 then stereo noise cancelling is OFF
0	SI	Search Indicator: if SI = 1 then pin SWPORT1 is output for the ready flag; if SI = 0 then pin SWPORT1 is software programmable port 1

Table 14. Format of 5th data byte

7 (MSB)	6	5	4	3	2	1	0 (LSB)
PLLREF	DTC	-	-	-	-	-	-

Table 15. Description of 5th data byte bits

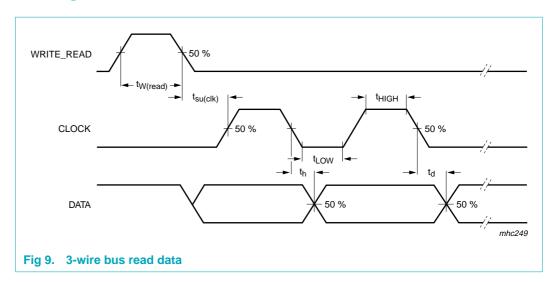

Bit	Symbol	Description
7	PLLREF	if PLLREF = 1 then the 6.5 MHz reference frequency for the PLL is enabled; if PLLREF = 0 then the 6.5 MHz reference frequency for the PLL is disabled; see <u>Table 16</u>
6	DTC	if DTC = 1 then the de-emphasis time constant is 75 μ s; if DTC = 0 then the de-emphasis time constant is 50 μ s
5 to 0	-	not used; position is don't care

Table 16. Clock bits setting

PLLREF	XTAL	Clock frequency
0	0	13 MHz
0	1	32.768 kHz
1	0	6.5 MHz
1	1	not allowed

Low-power FM stereo radio for handheld applications

8.5 Reading data

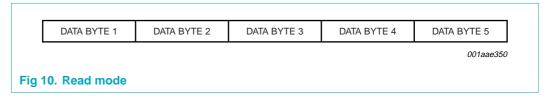


Table 17. Format of 1st data byte

7 (MSB)	6	5	4	3	2	1	0 (LSB)
RF	BLF	PLL13	PLL12	PLL11	PLL10	PLL9	PLL8

Table 18. Description of 1st data byte bits

Bit	Symbol	Description
7	RF	Ready Flag: if RF = 1 then a station has been found or the band limit has been reached; if RF = 0 then no station has been found
6	BLF	Band Limit Flag: if BLF = 1 then the band limit has been reached; if BLF = 0 then the band limit has not been reached
5 to 0	PLL[13:8]	setting of synthesizer programmable counter after search or preset

Table 19. Format of 2nd data byte

7 (MSB)	6	5	4	3	2	1	0 (LSB)
PLL7	PLL6	PLL5	PLL4	PLL3	PLL2	PLL1	PLL0

Table 20. Description of 2nd data byte bits

Bit S	Symbol	Description
7 to 0 P	PLL[7:0]	setting of synthesizer programmable counter after search or preset

Table 21. Format of 3rd data byte

7 (MSB)	6	5	4	3	2	1	0 (LSB)
STEREO	IF6	IF5	IF4	IF3	IF2	IF1	IF0

TEA5767HN_4

Low-power FM stereo radio for handheld applications

Table 22. Description of 3rd data byte bits

Bit	Symbol	Description
7	STEREO	Stereo indication: if STEREO = 1 then stereo reception; if STEREO = 0 then mono reception
6 to 0	PLL[13:8]	IF counter result

Table 23. Format of 4th data byte

7 (MSB)	6	5	4	3	2	1	0 (LSB)
LEV3	LEV2	LEV1	LEV0	CI3	CI2	CI1	0

Table 24. Description of 4th data byte bits

Bit	Symbol	Description
7 to 4	LEV[3:0]	level ADC output
3 to 1	CI[3:1]	Chip Identification: these bits have to be set to logic 0
0	-	this bit is internally set to logic 0

Table 25. Format of 5th data byte

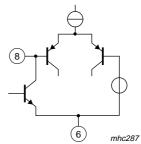
7 (MSB)	6	;	5	4	3	2	1 0 (LSB))
0	0	0	0	0	0	0	0	

Table 26. Description of 5th data byte bits

Bit	Symbol	Description
7 to 0	-	reserved for future extensions; these bits are internally set to logic 0

9. Internal circuitry

Table 27.	Internal circuitry		
Pin	Symbol	Equivalent circuit	
1	n.c.		
2	CPOUT		270 Ω mhc285
3	VCOTANK1		
4	VCOTANK2		120 Ω 120 Ω mhc286
5	V _{CC(VCO)}		


TEA5767HN_4

© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

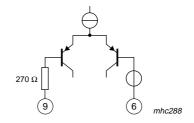
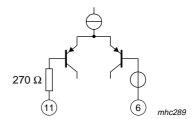
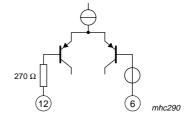

Low-power FM stereo radio for handheld applications

Table 27. Internal circuitry


Pin	Symbol	Equivalent circuit
_		
6	DGND	
_		
7	V_{CCD}	
8	DATA	


9 CLOCK

10	n.c.
11	WRITE/READ

12 BUSMODE

13 BUSENABLE

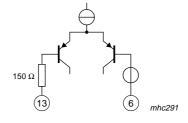


Table 27. Internal circuitry

Pin	Symbol	Equivalent circuit
14	SWPORT1	150 Ω (14) 6 mhc292
15	SWPORT2	150 Ω (15) (6) mhc293
16	XTAL1	
17	XTAL2	16 ————————————————————————————————————
18	PHASEFIL	18 mhc295
19	PILFIL	270 Ω 19 33 mhc296
20	n.c.	
21	n.c.	
22	V_{AFL}	

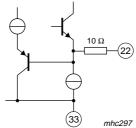


Table 27. Internal circuitry

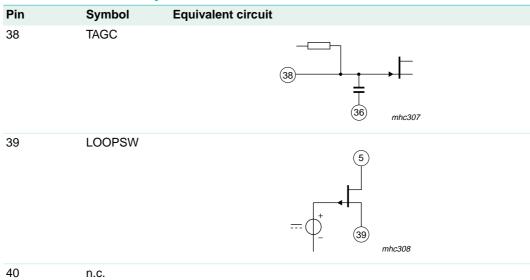

Pin	Symbol	Equivalent circuit
23	V _{AFR}	10 Ω 23 mhc298
24	TMUTE	24 1 kΩ 33 mhc299
25	MPXO	150 Ω 25 mhc300
26	V_{ref}	mhc301
27	TIFC	40 kΩ ————————————————————————————————————

Table 27. Internal circuitry

Table 27.	internal circuitry	
Pin	Symbol	Equivalent circuit
28	LIMDEC1	270 Ω 28 mhc303
29	LIMDEC2	270 Ω (29) mhc304
30	n.c.	
31	n.c.	
32	I _{gain}	32 mhc305
33	AGND	
34	V_{CCA}	
35	RFI1	
36	RFGND	
37	RFI2	35) 37)

Low-power FM stereo radio for handheld applications

Table 27. Internal circuitry

10. Limiting values

Table 28. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{VCOTANK1}	VCO tuned circuit output voltage 1		-0.3	3 +8	V
V _{VCOTANK2}	VCO tuned circuit output voltage 2		-0.3	3 +8	V
V_{CCD}	digital supply voltage		-0.3	3 +5	V
V_{CCA}	analog supply voltage		-0.3	3 +8	V
T_{stg}	storage temperature		-55	+150	°C
T_{amb}	ambient temperature		-10	+75	°C
V_{esd}	electrostatic discharge	all pins except	<u>[1]</u> –20	0 +200	V
	voltage	pin DATA	<u>[2]</u> –20	000 +2000	V
		pin DATA	<u>[1]</u> –15	60 +200	V
			<u>[2]</u> –20	000 +2000	V

^[1] Machine model (R = 0 Ω , C = 200 pF).

11. Thermal characteristics

Table 29. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air	29	K/W

^[2] Human body model (R = 1.5 k Ω , C = 100 pF).

12. Static characteristics

Table 30. Static characteristics

 $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply vo	tages[1]					
V_{CCA}	analog supply voltage		2.5	3.0	5.0	V
V _{CC(VCO)}	voltage controlled oscillator supply voltage		2.5	3.0	5.0	V
V_{CCD}	digital supply voltage		2.5	3.0	5.0	V
Supply cu	rrents					
I _{CCA}	analog supply current	operating				
		$V_{CCA} = 3 V$	6.0	8.4	10.5	mA
		$V_{CCA} = 5 V$	6.2	8.6	10.7	mA
		Standby mode				μ Α μ Α
		$V_{CCA} = 3 V$	-	3	6	μΑ
		$V_{CCA} = 5 V$	-	3.2	6.2	μΑ
I _{CC(VCO)}	voltage controlled	operating				μΑ
	oscillator supply current	$V_{VCOTANK1} = V_{VCOTANK2} = 3 V$	560	750	940	
		$V_{VCOTANK1} = V_{VCOTANK2} = 5 V$	570	760	950	μΑ
		Standby mode				
		$V_{VCOTANK1} = V_{VCOTANK2} = 3 V$	-	1	2	μΑ
		$V_{VCOTANK1} = V_{VCOTANK2} = 5 V$	-	1.2	2.2	μΑ
I_{CCD}	digital supply current	operating				
		$V_{CCD} = 3 V$	2.1	3.0	3.9	mA
		$V_{CCD} = 5 \text{ V}$	2.25	3.15	4.05	mA
		Standby mode; $V_{CCD} = 3 \text{ V}$				
		bus enable line HIGH	30	56	80	μΑ
		bus enable line LOW	11	19	26	μΑ
		Standby mode; $V_{CCD} = 5 \text{ V}$				
		bus enable line HIGH	50	78	105	μΑ
		bus enable line LOW	20	33	45	μΑ

^[1] V_{CCA} , $V_{CC(VCO)}$ and V_{CCD} must not differ more than 200 mV.

Table 31. DC operating points, unloaded DC voltage

 $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 ^{\circ}C; unless otherwise specified.}$

Operating point	Conditions	Min	Тур	Мах	Unit
V_{CPOUT}		0.1	-	$V_{CC(VCO)} - 0.1$	V
V_{XTAL2}	data byte 4 bit 4 = 1	1.64	1.72	1.8	V
	data byte 4 bit 4 = 0	1.68	1.75	1.82	V
V _{XTAL2}	data byte 4 bit 4 = 1	1.64	1.72	1.8	V
	data byte 4 bit 4 = 0	1.68	1.75	1.82	V
V _{PHASEFIL}		0.4	1.2	$V_{CCA} - 0.4$	V

TEA5767HN_4

© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Low-power FM stereo radio for handheld applications

Table 31. DC operating points, unloaded DC voltage ...continued $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}; \text{ unless otherwise specified.}$

- CCA - VC	DIAINNI "VOOTAINNZ "CCD =" ", "ailib	, .			
Operating point	Conditions	Min	Тур	Мах	Unit
V_{PILFIL}		0.65	0.9	1.3	V
V_{AFL}	$f_{RF} = 98 \text{ MHz}; V_{RF} = 1 \text{ mV}$	720	850	940	mV
V_{AFR}	$f_{RF} = 98 \text{ MHz}; V_{RF} = 1 \text{ mV}$	720	850	940	mV
V_{TMUTE}	$V_{RF} = 0 V$	1.5	1.65	1.8	V
V_{MPXO}	$f_{RF} = 98 \text{ MHz}; V_{RF} = 1 \text{ mV}$	680	815	950	mV
V_{ref}		1.45	1.55	1.65	V
V_{TIFC}		1.34	1.44	1.54	V
$V_{LIMDEC1}$		1.86	1.98	2.1	V
V_{LIMDEC2}		1.86	1.98	2.1	V
V_{Igain}		480	530	580	mV
V_{RFI1}		0.93	1.03	1.13	V
V_{RFI2}		0.93	1.03	1.13	V
V_{TAGC}	$V_{RF} = 0 V$	1	1.57	2	V

13. Dynamic characteristics

Table 32. Dynamic characteristics

 $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 ^{\circ}\text{C};$ measured in the circuit of <u>Figure 13</u>; AC values are given in RMS; for V_{RF} the EMF value is given; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voltage co	ntrolled oscillator					
f _{osc}	oscillator frequency		150	-	217	MHz
Crystal osc	cillator					
Circuit inpu	t: pin XTAL2					
V _{i(osc)}	oscillator input voltage	oscillator externally clocked	140	-	350	mV
R _i	input resistance	oscillator externally clocked				
		data byte 4 bit 4 = 0	2	3	4	kΩ
		data byte 4 bit 4 = 1	230	330	430	kΩ
C _i	input capacitance	oscillator externally clocked				
		data byte 4 bit 4 = 0	3.9	5.6	7.3	pF
		data byte 4 bit 4 = 1	5	6	7	pF
Crystal: 32.	768 kHz					
f _r	series resonance frequency	data byte 4 bit 4 = 1	-	32.768	-	kHz
$\Delta f/f_r$	frequency deviation		-20×10^{-6}	5 _	+20 × 10	-6
C ₀	shunt capacitance		-	-	3.5	pF
R _S	series resistance		-	-	80	kΩ
$\Delta f_r/f_{r(25 ^{\circ}C)}$	temperature drift	$-10 ^{\circ}\text{C} < \text{T}_{\text{amb}} < +60 ^{\circ}\text{C}$	-50×10^{-6}	5 _	+50 × 10	-6
Crystal: 13	MHz					
f _r	series resonance frequency	data byte 4 bit 4 = 0	-	13	-	MHz

Low-power FM stereo radio for handheld applications

 Table 32.
 Dynamic characteristics ...continued

 $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 ^{\circ}\text{C};$ measured in the circuit of Figure 13; AC values are given in RMS; for V_{RF} the EMF value is given; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
∆f/f _r	frequency deviation		-30×10^{-6}	S _	+30 × 10 ⁻¹	6
C_0	shunt capacitance		-	-	4.5	pF
C _{mot}	motional capacitance		1.5	-	3.0	fF
R _S	series resistance		-	-	100	kΩ
$\Delta f_r/f_{r(25 ^{\circ}C)}$	temperature drift	$-40~^{\circ}\text{C} < \text{T}_{\text{amb}} < +85~^{\circ}\text{C}$	-30×10^{-6}	· -	+30 × 10 ⁻¹	6
Synthesizer	•					
Programmab	ole divider[1]					
N_{prog}	programmable divider ratio	data byte 1 = XX11 1111; data byte 2 = 1111 1110	-	-	8191	
		data byte 1 = XX01 0000; data byte 2 = 0000 0000	2048	-	-	
ΔN_{step}	programmable divider step size		-	1	-	
Reference fr	equency divider					
N _{ref}	crystal oscillator divider	data byte 4 bit 4 = 0	-	260	-	
	ratio	data byte 5 bit $7 = 1$; data byte 4 bit $4 = 0$	-	130	-	
		data byte 4 bit 4 = 1	-	1	-	
Charge pum	p: pin CPOUT					
I _{sink}	charge pump peak sink current	$0.2 \text{ V} < \text{V}_{\text{CPOUT}} < \text{V}_{\text{VCOTANK2}} - 0.2 \text{ V};$ $f_{\text{VCO}} > f_{\text{ref}} \times N_{\text{prog}}$	-	0.5	-	μΑ
I _{source}	charge pump peak source current	$\begin{array}{l} 0.2 \text{ V} < \text{V}_{\text{CPOUT}} < \\ \text{V}_{\text{VCOTANK2}} - 0.2 \text{ V}; \\ \text{f}_{\text{VCO}} < f_{\text{ref}} \times N_{\text{prog}} \end{array}$	-	-0.5	-	μΑ
IF counter						
V_{RF}	RF input voltage for correct IF count		-	12	18	μV
N _{IF}	IF counter length		-	7	-	bit
N _{precount}	IF counter prescaler ratio		-	64	-	
T _{count(IF)}	IF counter period	$f_{xtal} = 32.768 \text{ kHz}$	-	15.625	-	ms
		f _{xtal} = 13 MHz	-	15.754	-	ms
RES _{count(IF)}	IF counter resolution	$f_{xtal} = 32.768 \text{ kHz}$	-	4.096	-	kHz
		f _{xtal} = 13 MHz	-	4.0625	-	kHz
IF _{count}	IF counter result for	f _{xtal} = 32.768 kHz	29h	-	3Dh	
	search tuning stop	f _{xtal} = 13 MHz	30h	-	3Dh	
Pins DATA,	CLOCK, WRITE/READ, BU	SMODE and BUSENABLE				
₹ _i	input resistance		10			МΩ

Low-power FM stereo radio for handheld applications

 Table 32.
 Dynamic characteristics ...continued

 $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 ^{\circ}\text{C};$ measured in the circuit of Figure 13; AC values are given in RMS; for V_{RF} the EMF value is given; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Software pi	ogrammable ports					
Pin SWPOR	T1					
I _{sink(max)}	maximum sink current	data byte 3 bit $0 = 0$; data byte 4 bit $0 = 0$; $V_{SWPORT1} < 0.5 V$	500	-	-	μΑ
leak(max)	maximum leakage current	data byte 3 bit 0 = 1; V _{SWPORT1} < 5 V	-1	-	+1	μΑ
Pin SWPOR	T2					
I _{sink(max)}	maximum sink current	data byte 4 bit 7 = 0; V _{SWPORT1} < 0.5 V	500	-	-	μΑ
I _{leak(max)}	maximum leakage current	data byte 4 bit 7 = 1; V _{SWPORT1} < 5 V	-1	-	+1	μΑ
FM signal c	hannel					
FM RF input	t					
f _{FM(ant)}	FM input frequency		76	-	108	MHz
R _i	input resistance at pins RFI1 and RFI2 to RFGND		75	100	125	Ω
C _i	input capacitance at pins RFI1 and RFI2 to RFGND		2.5	4	6	pF
V_RF	RF sensitivity input voltage	$f_{RF} = 76$ MHz to 108 MHz; $\Delta f = 22.5$ kHz; $f_{mod} = 1$ kHz; (S+N)/N = 26 dB; $L = R$; de-emphasis = 75 μ s; $B_{AF} = 300$ Hz to 15 kHz	-	2	3.5	μV
IP3 _{in}	in-band 3rd-order intercept point related to V _{RFI1-RFI2} (peak value)	$\Delta f_1 = 200 \text{ kHz}; \ \Delta f_2 = 400 \text{ kHz}; \\ f_{tune} = 76 \text{ MHz to } 108 \text{ MHz}$	81	84	-	dBμV
IP3 _{out}	out-band 3rd-order intercept point related to V _{RFI1-RFI2} (peak value)	$\Delta f_1 = 4 \text{ MHz}; \ \Delta f_2 = 8 \text{ Hz};$ $f_{tune} = 76 \text{ MHz to } 108 \text{ MHz}$	82	85	-	dBμV
RF AGC						
V _{RF1}	RF input voltage for start of AGC	$\begin{split} &f_{RF1} = 93 \text{ MHz; } f_{RF2} = 98 \text{ MHz;} \\ &V_{RF2} = 50 \text{ dB}\mu\text{V;} \\ &\left \frac{\Delta V_{TMUTE}}{V_{RF1}}\right < \frac{14 \text{ mV}}{3 \text{ dB}\mu\text{V}} \end{split}$	^[2] 66	72	78	dBμV
IE Cite		'KFI '				
IF filter	IE filter contex from the		245	205	225	I/LI=
f _{IF}	IF filter center frequency		215	225	235	kHz
B _{IF}	IF filter bandwidth	Af — ↓200 k∐z·	85 [3] 39	94	102	kHz dB
S ₊₂₀₀	high side 200 kHz selectivity	$\Delta f = +200 \text{ kHz};$ $f_{\text{tune}} = 76 \text{ MHz to } 108 \text{ MHz}$		43	-	
S ₋₂₀₀	low side 200 kHz selectivity	$\Delta f = -200 \text{ kHz};$ $f_{tune} = 76 \text{ MHz to } 108 \text{ MHz}$	[<u>3</u>] 32	36	-	dB
S ₊₁₀₀	high side 100 kHz	$\Delta f = +100 \text{ kHz};$	<u>[3]</u> 8	12	_	dB

Low-power FM stereo radio for handheld applications

 Table 32.
 Dynamic characteristics ...continued

 $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 ^{\circ}\text{C};$ measured in the circuit of <u>Figure 13</u>; AC values are given in RMS; for V_{RF} the EMF value is given; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
S ₋₁₀₀	low side 100 kHz selectivity	$\Delta f = -100 \text{ kHz};$ $f_{\text{tune}} = 76 \text{ MHz to } 108 \text{ MHz}$	<u>[3]</u>	8	12	-	dB
IR	image rejection	f_{tune} = 76 MHz to 108 MHz; V_{RF} = 50 dB μ V		24	30	-	dB
FM IF level	detector and mute voltage)					
V_{RF}	RF input voltage for start of level ADC	read mode data byte 4 bit 4 = 1		2	3	5	μV
ΔV_{step}	level ADC step size			2	3	5	dB
Pin TMUTE							
V_{level}	level output DC voltage	$V_{RF} = 0 \mu V$		1.55	1.65	1.80	V
		$V_{RF} = 3 \mu V$		1.60	1.70	1.85	V
$V_{level(slope)}$	slope of level voltage	V_{RF} = 10 μV to 500 μV		150	165	180	$\frac{\text{mV}}{20 \text{ dB}}$
R _o	output resistance			280	400	520	$k\Omega$
FM demod	ulator: pin MPXO						
V _{MPXO}	demodulator output voltage	$\begin{split} &V_{RF}=1 \text{ mV; L}=R;\\ &\Delta f=22.5 \text{ kHz; } f_{mod}=1 \text{ kHz;}\\ &\text{de-emphasis}=75 \mu\text{s;}\\ &B_{AF}=300 \text{ Hz to }15 \text{ kHz} \end{split}$		60	75	90	mV
(S+N)/N	maximum signal plus noise-to-noise ratio	$\begin{split} &V_{RF}=1 \text{ mV; L}=R;\\ &\Delta f=22.5 \text{ kHz; } f_{mod}=1 \text{ kHz;}\\ &\text{de-emphasis}=75 \mu\text{s;}\\ &B_{AF}=300 \text{ Hz to }15 \text{ kHz} \end{split}$		54	60	-	dB
THD	total harmonic distortion	V_{RF} = 1 mV; L = R; Δf = 75 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μs		-	0.5	1.5	%
α_{AM}	AM suppression	V_{RF} = 300 μV; L = R; Δf = 22.5 kHz; f_{mod} = 1 kHz; m = 0.3; de-emphasis = 75 μs; B_{AF} = 300 Hz to 15 kHz		40	-	-	dB
R _o	demodulator output resistance			-	-	500	Ω
I _{sink}	demodulator output sink current			-	-	30	μΑ
Soft mute							
V_{RF}	RF input voltage for soft mute start	α_{mute} = 3 dB; data byte 4 bit 3 = 1		3	5	10	μV
$lpha_{ ext{mute}}$	mute attenuation	V_{RF} = 1 μV; L = R; Δf = 22.5 kHz; f_{mod} = 1 kHz de-emphasis = 75 μs; B_{AF} = 300 Hz to 15 kHz; data byte 4 bit 3 = 1		10	20	30	dB

Low-power FM stereo radio for handheld applications

 Table 32.
 Dynamic characteristics ...continued

 $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 ^{\circ}\text{C};$ measured in the circuit of Figure 13; AC values are given in RMS; for V_{RF} the EMF value is given; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
MPX decod	ler					
V_{AFL}	left audio frequency output voltage	V_{RF} = 1 mV; L = R; Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s	60	75	90	mV
V_{AFR}	right audio frequency output voltage	V_{RF} = 1 mV; L = R; Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s	60	75	90	mV
R_{AFL}	left audio frequency output resistance		-	-	50	Ω
R _{AFR}	right audio frequency output resistance		-	-	50	Ω
I _{sink(AFL)}	left audio frequency output sink current		170	-	-	μΑ
I _{sink(AFR)}	right audio frequency output sink current		170	-	-	μΑ
V _{MPXIN(max)}	input overdrive margin	THD < 3 %	4	-	-	dB
V_{AFL}	left audio frequency output voltage difference	V_{RF} = 1 mV; L = R; Δf = 75 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s	-1	-	+1	dB
V_{AFR}	right audio frequency output voltage difference	V_{RF} = 1 mV; L = R; Δf = 75 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s	-1	-	+1	dB
$\alpha_{cs(stereo)}$	stereo channel separation	V_{RF} = 1 mV; R = L = 0 or R = 0 and L = 1 including 9 % pilot; Δf = 75 kHz; f_{mod} = 1 kHz; data byte 3 bit 3 = 0; data byte 4 bit 1 = 1	24	30	-	dB
(S+N)/N	maximum signal plus noise-to-noise ratio	V_{RF} = 1 mV; L = R; Δf = 22.5 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s; B_{AF} = 300 Hz to 15 kHz	54	60	-	dB
THD	total harmonic distortion	V_{RF} = 1 mV; L = R; Δf = 75 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μ s	-	0.4	1	%
α_{pilot}	pilot suppression measured at pins V _{AFL} and V _{AFR}	related to Δf = 75 kHz; f_{mod} = 1 kHz; de-emphasis = 75 μs	40	50	-	dB
Δf_{pilot}	stereo pilot frequency	V _{RF} = 1 mV; read mode				
	deviation	data byte 3 bit 7 = 1	-	3.6	5.8	kHz
		data byte 3 bit 7 = 0	1	3	-	kHz
$\frac{\Delta f_{pilot1}}{\Delta f_{pilot2}}$	pilot switch hysteresis	$V_{RF} = 1 \text{ mV}$	2	-	-	dB

Low-power FM stereo radio for handheld applications

 Table 32.
 Dynamic characteristics ...continued

 $V_{CCA} = V_{VCOTANK1} = V_{VCOTANK2} = V_{CCD} = 2.7 \text{ V}; T_{amb} = 25 ^{\circ}\text{C};$ measured in the circuit of <u>Figure 13</u>; AC values are given in RMS; for V_{RF} the EMF value is given; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
High cut co	ontrol					
TC _{de-em}	de-emphasis time	V _{RF} = 1 mV				
	constant	data byte 5 bit 6 = 0	38	50	62	μs
		data byte 5 bit 6 = 1	57	75	93	μs
		$V_{RF} = 1 \mu V$				
		data byte 5 bit 6 = 0	114	150	186	μs
		data byte 5 bit 6 = 1	171	225	279	μs
Mono to ste	ereo blend control					
$\alpha_{cs(stereo)}$	stereo channel separation	$V_{RF}=45~\mu V;~R=L=0~or$ R=0~and~L=1~including~9~% pilot; $\Delta f=75~kHz;~f_{mod}=1~kHz;$ data byte 3 bit 3 = 0; data byte 4 bit 1 = 1	4	10	16	dB
Mono to ste	ereo switched					
$\alpha_{cs(stereo)}$	stereo channel separation switching from mono to stereo with increasing RF input level	R = L = 0 or R = 0 and L = 1 including 9 % pilot; Δf = 75 kHz; f_{mod} = 1 kHz; data byte 3 bit 3 = 0; data byte 4 bit 1 = 0				
		$V_{RF} = 1 \text{ mV}$	24	-	-	dB
		$V_{RF} = 20 \mu V$	-	-	1	dB
Bus-driven	mute functions					
Tuning mut	re e					
$lpha_{mute}$	V_{AFL} and V_{AFR} muting depth	data byte 1 bit 7 = 1	-	-	-60	dB
$\alpha_{\text{mute}(L)}$	V _{AFL} muting depth	data byte 3 bit 1 = 1; $f_{AF} = 1 \text{ kHz}$; $R_{load(L)} < 30 \text{ k}\Omega$	-	-	-80	dB
$\alpha_{\text{mute}(R)}$	V _{AFR} muting depth	data byte 3 bit 2 = 1; $f_{AF} = 1 \text{ kHz}$; $R_{load(R)} < 30 \text{ k}\Omega$	-	-	-80	dB

[1] Calculation of this 14-bit word can be done as follows:

$$\text{formula for high side injection: } N = \frac{4 \times (f_{RF} + f_{IF})}{f_{ref}} \text{; formula for low side injection: } N = \frac{4 \times (f_{RF} - f_{IF})}{f_{ref}}$$

where:

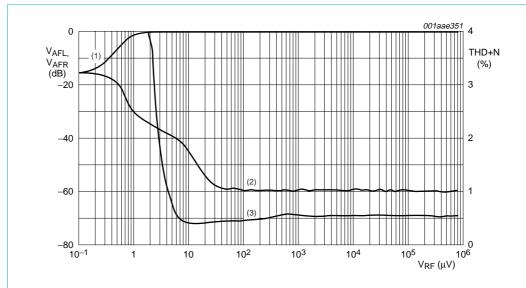
N = decimal value of PLL word;

f_{RF} = the wanted tuning frequency [Hz];

 f_{IF} = the intermediate frequency [Hz] = 225 kHz;

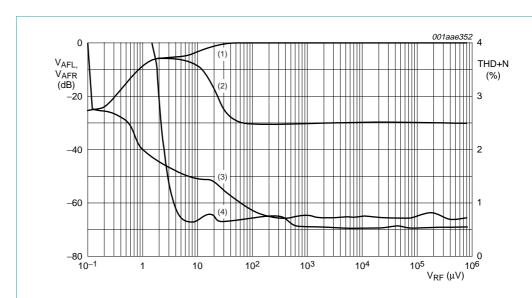
 f_{ref} = the reference frequency [Hz] = 32.768 kHz for the 32.768 kHz crystal; f_{ref} = 50 kHz for the 13 MHz crystal or when externally clocked with 6.5 MHz.

Example for receiving a channel at 100 MHz with high side injection: $N = \frac{4 \times (100 \times 10^6 + 225 \times 10^3)}{32768} = 12234$


The PLL word becomes 2FCAh.

- [2] V_{RF} in Figure 13 is replaced by $V_{RF1} + V_{RF2}$. The radio is tuned to 98 MHz (high side injection).
- [3] Low side and high side selectivity can be switched by changing the mixer from high side to low side LO injection.

TEA5767HN_4


Low-power FM stereo radio for handheld applications

14. FM characteristics

- (1) Mono signal, no softmute, $\Delta f = 22.5 \text{ kHz}$.
- (2) Noise in mono mode, no softmute.
- (3) Total Harmonic Distortion (THD), $\Delta f = 75 \text{ kHz}$.

Fig 11. FM mono characteristics

- (1) Right channel with modulation right, SNC on, Δf = 67,5 kHz + 6,75 kHz pilot.
- (2) Left channel with modulation left, SNC on, Δf = 67,5 kHz + 6,75 kHz pilot.
- (3) Noise in stereo mode, SNC on, Δf = 0 kHz + 6,75 kHz pilot.
- (4) Total Harmonic Distortion (THD), $\Delta f = 67.5 \text{ kHz} + 6.75 \text{ kHz}$ pilot.

Fig 12. FM stereo characteristics

TEA5767HN

Low-power FM stereo radio for handheld applications

15. I²C-bus characteristics

Table 33. Digital levels and timing

Table 33.	Digital levels and tilling				
Symbol	Parameter	Conditions	Min	Max	Unit
Digital in	puts				
V_{IH}	HIGH-level input voltage		$0.45V_{\text{CCD}}$	-	V
V_{IL}	LOW-level input voltage		-	$0.2V_{\text{CCD}}$	V
Digital o	utputs				
$I_{sink(L)}$	LOW-level sink current		500	-	μΑ
V_{OL}	LOW-level output voltage	$I_{OL} = 500 \mu A$	-	450	mV
Timing					
f _{clk}	clock input frequency	I ² C-bus enabled	-	400	kHz
		3-wire bus enabled	-	400	kHz
t _{HIGH}	clock HIGH time	I ² C-bus enabled	1	-	μs
		3-wire bus enabled	1	-	μs
t_{LOW}	clock LOW time	I ² C-bus enabled	1	-	μs
		3-wire bus enabled	1	-	μs
t _{W(write)}	pulse width for write enable	3-wire bus enabled	1	-	μs
t _{W(read)}	pulse width for read enable	3-wire bus enabled	1	-	μs
t _{su(clk)}	clock set-up time	3-wire bus enabled	300	-	ns
t _{h(out)}	read mode data output hold time	3-wire bus enabled	10	-	ns
t _{d(out)}	read mode output delay time	3-wire bus enabled	-	400	ns
t _{su(write)}	write mode set-up time	3-wire bus enabled	100	-	ns
t _{h(write)}	write mode hold time	3-wire bus enabled	100	-	ns

16. Test information

Table 34. Component list for Figure 1 and Figure 13

Component	Parameter	Value	Tolerance	Туре	Manufacturer
R1	resistor with low temperature coefficient	18 kΩ	±1 %	RC12G	Philips
D1 and D2	varicap for VCO tuning	-	-	BB202	Philips
L1	RF band filter coil	120 nH	±2 %	$Q_{min} = 40$	
L2 and L3	VCO coil	33 nH	±2 %	$Q_{min} = 40$	
XTAL13MHz	13 MHz crystal	-	-	NX4025GA	
C _{pull}	pulling capacitor for NX4025GA	10 pF	-		
XTAL32768Hz	32,768 kHz crystal	-	-		
C _{pull}	pulling capacitor for XTAL32768Hz	C _{load} [1]	-		

^[1] Value of the C_{pull} must be as close as possible to the value of C_{load} of the crystal.

Low-power FM stereo radio for handheld applications

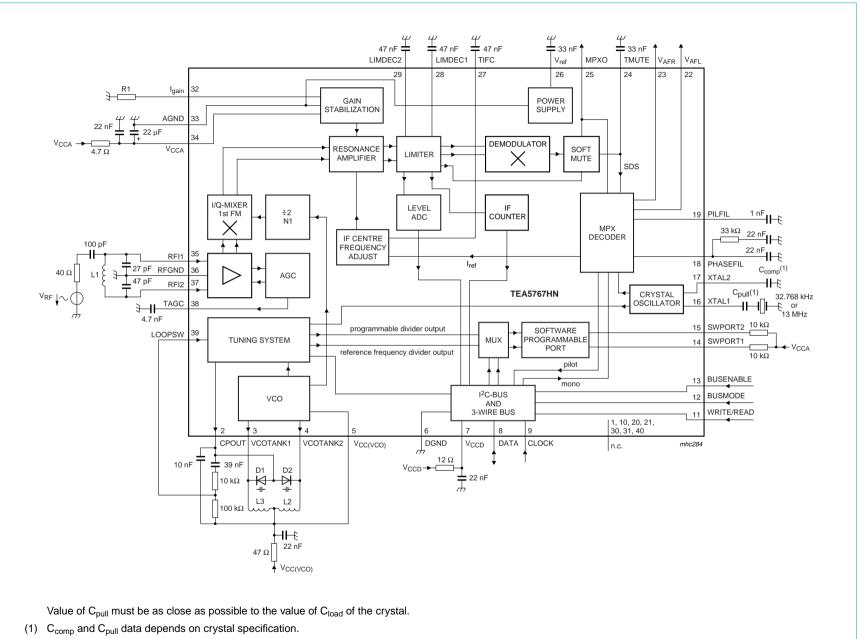


Fig 13. Application and test diagram

© Koninklijke Philips Electronics N.V. 2006. All rights reserved

Product data sheet

Rev.

2

20 February 2006

17. Package outline

HVQFN40: plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6 \times 6 \times 0.85 \text{ mm}$

SOT618-1

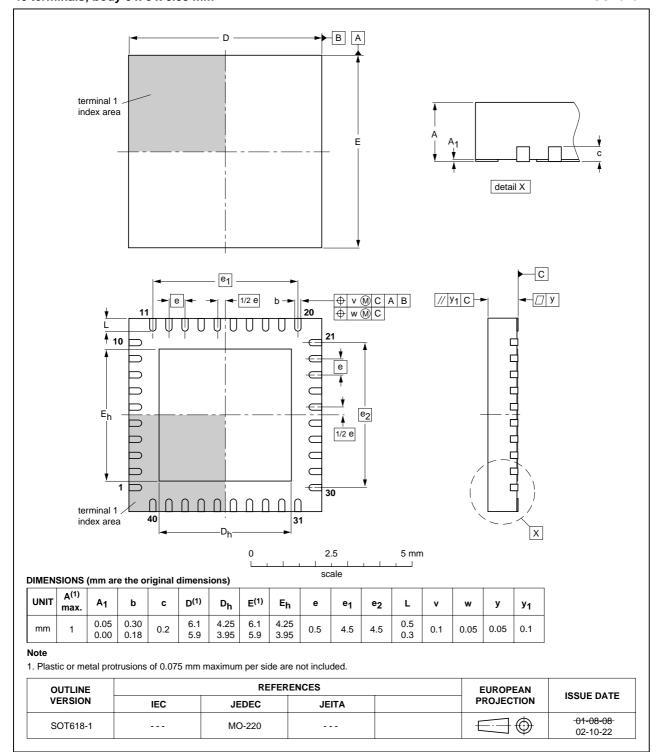


Fig 14. Package outline SOT618-1 (HVQFN40)

Low-power FM stereo radio for handheld applications

18. Soldering

18.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

18.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness ≥ 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

18.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;

TEA5767HN_4

Low-power FM stereo radio for handheld applications

 smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

18.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300\,^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between 270 °C and 320 °C.

18.5 Package related soldering information

Table 35. Suitability of surface mount IC packages for wave and reflow soldering methods

Package[1]	Soldering method	
	Wave	Reflow[2]
BGA, HTSSONT ^[3] , LBGA, LFBGA, SQFP, SSOPT ^[3] , TFBGA, VFBGA, XSON	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ^[4]	suitable
PLCC[5], SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended[5][6]	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended[7]	suitable
CWQCCNL[8], PMFP[9], WQCCNL[8]	not suitable	not suitable

For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);
 order a copy from your Philips Semiconductors sales office.

- [2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C \pm 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.

- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

Low-power FM stereo radio for handheld applications

19. Revision history

Table 36. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
TEA5767HN_4	20060220	Product data sheet	-	TEA5767HN_3 (9397 750 13531)	
Modifications:		of this data sheet has been redesignstandard of Philips Semiconductor	• •	the new presentation and	
	 Modified: <u>Se</u> description 	ection 3 "Quick reference data" an	EMF value remark	is added to the header	
	Added: Figure 3				
	 Modified: <u>Section 13 "Dynamic characteristics"</u> values of IF_{count} changed and EMF value remark is added to the header description 				
	• Replaced: Figure 11 and Figure 12				
	 Modified: component list of <u>Table 34</u> updated 				
TEA5767HN_3 (9397 750 13531)	20040920	Product data sheet	-	TEA5767HN_2 (9397 750 12071)	
TEA5767HN_2 (9397 750 12071)	20031112	Preliminary specification	-	TEA5767HN_1 (9397 750 09626)	
TEA5767HN_1 (9397 750 09626)	20020913	Preliminary specification	-	-	

Low-power FM stereo radio for handheld applications

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.semiconductors.philips.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Philips Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Philips Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

20.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Philips Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Philips Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Philips Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Philips Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental damage. Philips Semiconductors accepts no liability for inclusion and/or use of Philips Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Philips Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.semiconductors.philips.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Philips Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

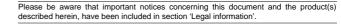
I²C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.

21. Contact information

For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Low-power FM stereo radio for handheld applications


17 1818.1

18.2 18.3 18.4 18.5 **19 20** 20.1 20.2 20.3 20.4 **21**

22. Contents

1	General description
2	Features
3	Quick reference data 2
4	Ordering information
5	Block diagram 4
6	Pinning information 5
6.1	Pinning
6.2	Pin description 5
7	Functional description 6
7.1	Low-noise RF amplifier 6
7.2	FM mixer 6
7.3	VCO 6
7.4	Crystal oscillator
7.5	PLL tuning system
7.6	RF AGC
7.7	IF filter 7
7.8	FM demodulator
7.9	Level voltage generator and analog-to-digital
7.10	converter
7.10	Soft mute
7.12	MPX decoder 7
7.12	Signal dependent mono to stereo blend 8
7.14	Signal dependent AF response
7.15	Software programmable ports 8
7.16	I ² C-bus and 3-wire bus
8	I ² C-bus, 3-wire bus and bus-controlled
	functions
8.1	I ² C-bus specification
8.1.1	Data transfer
8.1.2	Power-on reset
8.2	I ² C-bus protocol
8.3	3-wire bus specification
8.3.1	Data transfer
8.3.2	Power-on reset
8.4	Writing data
8.5	Reading data 16
9	Internal circuitry
10	Limiting values
11	Thermal characteristics
12	Static characteristics
13	Dynamic characteristics 24
14	FM characteristics
15	I ² C-bus characteristics
16	Test information

Package outline	33
Soldering	34
Introduction to soldering surface mount	
packages	34
Reflow soldering	34
Wave soldering	34
Manual soldering	35
Package related soldering information	35
Revision history	37
Legal information	38
Legal information	38 38
Data sheet status	38
Data sheet status	38 38
Data sheet status	38 38 38 38

© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Document identifier: TEA5767HN_4