
868/915MHz FSK/ASK/FM Transmitter

Description	The TH7108 FSK/ASK/FM transmitter IC is designed for applications in the European 868MHz short range devices (SRD) band, according to the EN 300 220 telecommunications standard. It can also be used for any other system with carrier frequencies ranging from 700 to 1000 MHz (e.g. for applications in the US 915MHz ISM band). The	transmitter's carrier frequency f_c is determined by the frequency of the reference crystal f_{ref} that is used. The integrated PLL synthesizer ensures that each RF value, ranging from 700 to 1000 MHz, can be achieved by us- ing a crystal with reference frequency according to: $f_{ref} = f_c/N$, where N = 32 is the PLL feedback divider ratio.
Features	 fully integrated, PLL-stabilized VCO FSK through crystal pulling allows modulation from DC to 20 kbit/s high deviation possible for wideband data transmission ASK achieved by on/off keying of in- ternal power amplifier FM possible with external varactor wide power supply range from 2.1 to 5.5 V flexible frequency range from 700 to 1000 MHz high over-all frequency accuracy 	 adjustable output power range from -12 to +3 dBm adjustable current consumption from 6 to 12.5 mA deviation and center frequency independently adjustable very low standby current differential output well-suited for loop antenna external clock available for μC drive, down to 1.9 V supply "clock only" mode conforms to EN 300 220 standard
Applications	 keyless car security and central locking low power telemetry 	 general digital data transmission general analog audio signal transmission

□ alarm systems

Block Diagram with External Components

Fig. 1: TH7108 block diagram

868/915MHz FSK/ASK/FM Transmitter

Theory of Operation

FSK Modulation

A Colpitts crystal oscillator (XOSC) is used as the reference oscillator of a phaselocked loop (PLL) synthesizer. FSK modulation is achieved by pulling the crystal (XTAL) through the data. So a CMOScompatible data stream applied at input DATA digitally modulates the XOSC. Two external pulling capacitors C_{x1} and C_{x2} allow the FSK deviation and center frequency to be adjusted independently. At DATA = LOW C_{x2} is connected in parallel to C_{x1} leading to the low-frequency component of the FSK spectrum (fmin); while at DATA = HIGH C_{x2} is deactivated and the XOSC is set to its high frequency, leading to f_{max}.

An external reference signal can be directly AC-coupled to pin RO1. Then the TH7108 is used without an XTAL. The reference signal has to contain the FSK (or FM) and sets the carrier frequency.

ASK Modulation

The TH7108 can be ASK-modulated by applying data directly at pin PS. This turns the PA on and off and therefore leads to an ASK signal at the output.

Frequency Modulation (FM)

For FM operation an external varactor is required. It simply acts as a pulling capacitor connected in series to the crystal. Then the analog modulation signal, applied through a series resistor, directly modulates the XOSC.

General

Other parts of the TH7108 transmitter are the fully integrated voltage-controlled oscillator (VCO), the divide-by-32 divider (div32), the phase-frequency detector (PFD) and the charge pump. An external loop filter between pins LF1 and LF2 determines the dynamic behaviour of the PLL and suppresses reference spurious signals. The VCO's output signal feeds the power amplifier (PA). RF signal power Po can be adjusted in six steps from $P_o = -12$ to +3 dBm either by changing the value of resistor R_{ps} or by varying the voltage V_{ps} at pin PS. The open-collector differential output (OUT1, OUT2) can be used to either directly drive a loop antenna or to be converted to a single-ended impedance by means of a balanced-to-unbalanced (balun) transformer. For maximum available output power, the differential output should be matched to a load of approx. 0.5 to 1.5 kΩ.

Bandgap biasing ensures stable operation of the IC at a power supply range of 2.1 to 5.5 V. The mode control logic allows four different modes of operation as listed in the following table. The mode control pins ENCK and ENTX are internally terminated to pull-down and pull-up resistors, respectively. This guarantees that the whole circuit is shut down if these pins are left floating.

ENCK	ENTX	Mode	Description
0	0	all OFF	whole circuit in standby
0	1	TX only	TX functionality only, no clock available
1	0	clock only	TX in standby and clock available
1	1	all ON	TX functional and clock available

The clock output CKOUT can be used to drive a μ C. This output can be activated by the ENCK pin as required for any specific application. Clock frequency is 1/8 of the reference crystal frequency.

Rev. 2.0

868/915MHz FSK/ASK/FM Transmitter

Electrical Characteristics

Ratings

Absolute Maximum

Parameter	Symbol	Condition	Min	Max	Unit
supply voltage	V _{cc}		-0.3	7.0	V
input voltage	Vin	@ DATA, ENCK, ENTX	-0.3	VCC+0.3	V
input current	l _{in}	@ DATA, ENCK, ENTX	-1.0	1.0	mA
storage temperature	T _{str}		-40	150	°C

Operating Conditions

Parameter	Symbol	Min	Max	Unit
supply voltage	V _{cc}	2.1	5.5	V
ambient temperature	Ta	-40	85	°C
VCO frequency	fc	700	1000	MHz
XOSC frequency	f _{ref}	25	32	MHz
clock frequency	f _{clk}	3	4	MHz

DC Characteristics

 $T_a = -40 \text{ to } +85 \text{ °C},$ $V_{cc} = 2.1 \text{ to } 5.5 \text{ V},$ typical values at $T_a = 23 \text{ °C}$ and $V_{cc} = 3 \text{ V}$

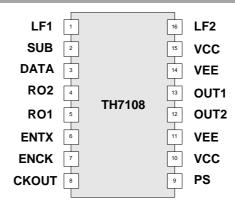
Parameter	Symbol	Condition	Min	Тур	Мах	Unit
standby current	I _{stb}	ENCK=0, ENTX=0		< 0.1	0.1	μA
clock only cur- rent	I _{clk}	ENCK=1, ENTX=0	0.7	0.9	1.1	mA
operating current	I _{cc}	ENCK=1, ENTX=1, R _{ps} =47k Ω	7	9	10	mA
input HIGH volt- age	V _{HIGH}	@ DATA, ENCK, ENTX	$0.7^{*}V_{cc}$		V _{cc} +0.3	V
input LOW volt- age	V _{LOW}	@ DATA, ENCK, ENTX	-0.3		0.3*V _{cc}	V
input current @ V _{LOW} <v<sub>In<v<sub>HIGH</v<sub></v<sub>	l _{in}	@ DATA, ENCK, ENTX	-10		10	μA

868/915MHz FSK/ASK/FM Transmitter

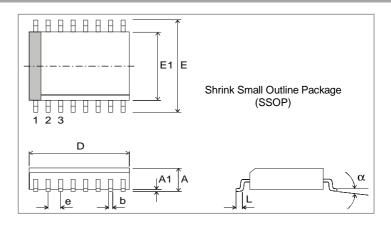
$T_a = -40 \text{ to } +85 \text{ °C},$	Parameter	Symbol	Condition	Min	Тур	Max	Unit
$V_{cc} = 2.1$ to 5.5 V, typical values at $T_a = 23$ °C	output power	Po	DATA = HIGH		-1		dBm
and $V_{cc} = 3 V$	max. data rate at FSK	R _{FSK}			25		kbit/s
	FSK deviation	Δf_{FSK}	adjustable with C_{x1} , C_{x2} , ref. to Fig. 2		±30		kHz
	max. data rate at ASK	Rask	DATA = LOW		40		kbit/s
	max. modulation frequency at FM	f _{mod}	DATA = HIGH		20		kHz
	FM deviation	Δf_{FM}	adjustable with varactor and $V_{\mbox{\scriptsize FM}}$		±12		kHz
	reference spurs	P _{ref}	$@ f_c \pm f_{ref} \\$		-40		dBm
	clock spurs	P _{clk}	$@ f_c \pm f_{clk} \\$		-40		dBm
	harmonic content	Pharm			-55		dBm
	phase noise	L	DATA = HIGH		-87		dBc/Hz
			@ $f_c \pm 500 kHz$				
	VCO gain	k vco			300		MHz/V
	charge pump current	I _{CP}			±260		μA
	clock volt. swing	V _{CKOUT}	$C_{load} = 5pF$		1.8		V _{pp}
	start-up time	t _{on}	from "all OFF" to any other mode		0.7		ms

Output Power Selection

typical values at T_a = 23 °C and $V_{cc} = 3 V$,


(ENCK = 1, ENTX = 1, f_c = 868.35 MHz, test circuit shown in Fig. 2, C2 and C3 to adjust for P_o and P_{harm})

R _{ps} / kW	³ 68	56	47	39	27	15
V _{ps} / V	³ 2	1.2	0.9	0.7	0.5	0.3
I _{cc} / mA	12.5	9.5	8.5	6.5	5.8	5.0
P_o / dBm	3.0	0.5	-1.0	-4.0	-8.0	-12.0
P _{harm} /dBm	≤-36	≤-40	≤-40	≤-45	≤-45	≤-50
C2 / pF	TBD	TBD	TBD	TBD	TBD	TBD
C3 / pF	TBD	TBD	TBD	TBD	TBD	TBD


868/915MHz FSK/ASK/FM Transmitter

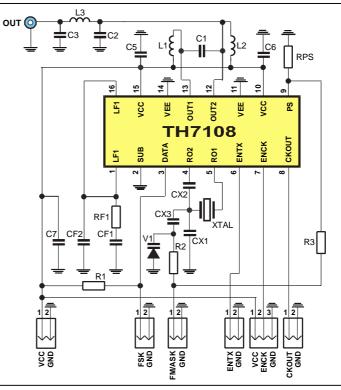
Pin Description

Pin #	Pin Name	Description
1	LF1	charge pump output, input to loopfilter
2	SUB	negative power supply, substrate connection
3	DATA	FSK data input, CMOS-compatible
4	RO2	XOSC FSK pulling pin, switch to GND or OPEN
5	RO1	XOSC connection to XTAL, base of bipolar transistor
6	ENTX	mode control input, CMOS-compatible with internal pull-up res.
7	ENCK	mode control input, CMOS-compatible with internal pull-down res.
8	CKOUT	clock output
9	PS	power-select and ASK input, high-impedance comparator logic
10	VCC	positive power supply
11	VEE	negative power supply
12	OUT2	differential power amp output, open collector
13	OUT1	differential power amp output, open collector
14	VEE	negative power supply
15	VCC	positive power supply
16	LF2	VCO tuning input, output from loopfilter

Package Information

Dimension : mm

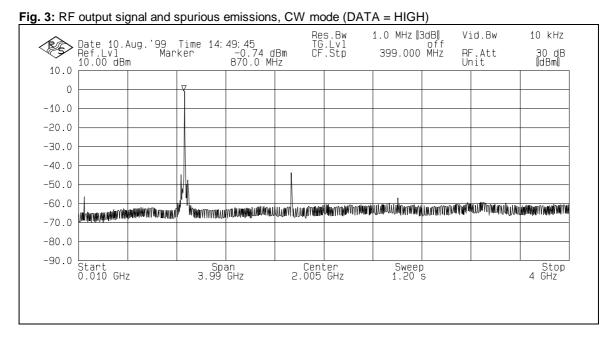
SSOP 16 150 mil

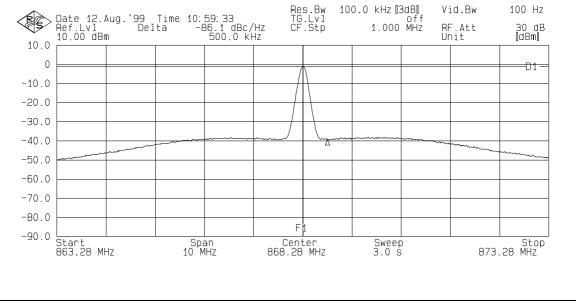

	D	E1	E	А	A1	е	b	L	Copl	α
min	4.80	3.81	5.79	1.35	0.10	0.635	0.20	0.41		0°
max	5.00	3.99	6.20	1.75	0.25		0.30	1.27	0.10	8°

868/915MHz FSK/ASK/FM Transmitter

Test Circuit

Fig. 2: test circuit for FSK, ASK and FM; with 50 $\!\Omega$ matching network


Part	Size	Value	Tolerance	Description
CF1	0603	5.6 nF	±10%	loopfilter capacitor
CF2	0603	4.7 pF	±10%	loopfilter capacitor
CX1	0603	15 pF	±5%	XOSC capacitor, for FSK only
CX2	0603	12 pF	±5%	XOSC capacitor, for FSK only
CX3	0603	1 nF	±10%	XOSC capacitor, for FM only
C1	0603	0.47 pF	±5%	impedance matching capacitor
C2	0805	1.2 pF	±5%	impedance matching capacitor
C3	0805	5.5 pF	±5%	impedance matching capacitor
C4	0603	10 pF	±5%	impedance matching capacitor
C5	0603	330 pF	±10%	blocking capacitor
C6	0603	330 pF	±10%	blocking capacitor
C7	1206	220 nF	±20%	blocking capacitor
L1	0603	10 nH	±5%	impedance matching inductor
L2	0603	15 nH	±5%	impedance matching inductor
L3	0805	15 nH	±5%	impedance matching inductor
RF1	0805	3.6 kΩ	±10%	loopfilter resistor
RF2	0805	2.2 kΩ	±10%	loopfilter resistor
RPS	0805	47 kΩ	±10%	power-select resistor
R1	0805	470 kΩ	±10%	pull-up resistor, optional
R2	0805	30 kΩ	±10%	varactor bias resistor, for FM only
R3	0805	0 Ω	±10%	ASK jumper, for ASK only
V1	SOD323	BB535		varactor diode, for FM only
XTAL	HC49/S	27.1344 MHz fundamental wave	±30ppm calibration ±30ppm temp.	crystal, $C_{load} = 12 pF$, $C_{0,max} = 4 pF$, $C_m = 20 fF$, $R_m = 10 - 20 \Omega$


868/915MHz FSK/ASK/FM Transmitter

Spectrum Plots

All plots depict TH7108's typical performance at V_{cc} = 3.0 V and T_a = 23 °C, derived with the test circuit shown Fig. 2.

868/915MHz FSK/ASK/FM Transmitter

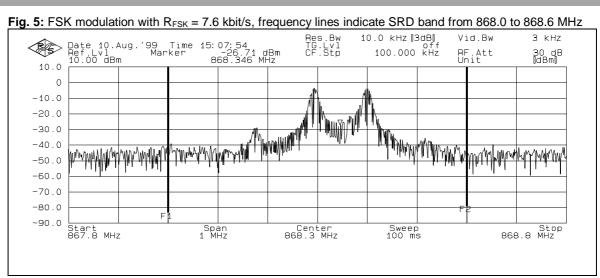
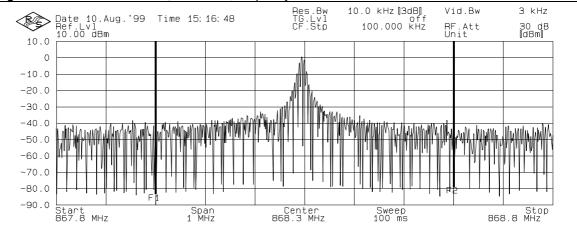
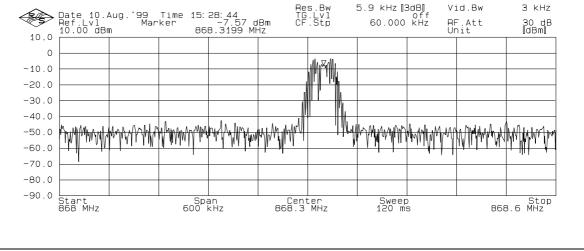




Fig. 6: ASK modulation with R_{ASK} = 4 kbit/s, frequency lines indicate SRD band from 868.0 to 868.6 MHz

Fig. 7: FM with f_{mod} = 2 kHz, FM input signal with 1 V_{pp} around 1.5 V_{DC}

