New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TIP47, TIP48, TIP50

High Voltage NPN Silicon Power Transistors

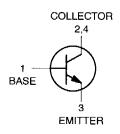
This series is designed for line operated audio output amplifier, SWITCHMODE power supply drivers and other switching applications.

Features

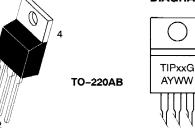
- Popular TO-220 Plastic Package
- These Devices are Pb–Free and are RoHS Compliant*
- Complementary to the MJE5730 and MJE5731 Series

MAXIMUM RATINGS

Rating	Symbol	TIP47	TIP48	TIP50	Unit
Collector - Emitter Voltage	V _{CEO}	250	300	400	Vdc
Collector - Base Voltage	V _{CB}	350	400	500	Vdc
Emitter – Base Voltage	V _{EB}	5.0			Vdc
Collector Current – Continuous	lc	1.0			Adc
Collector Current – Peak	I _{CM}	2.0			Adc
Base Current	۱ _B	0.6			Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	40 0.32			w w/°c
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	2.0 0.016		w w/∘c	
Unclamped Inducting Load Energy (See Figure 8)	Ë	20			mJ
Operating and Storage Junction Temperature Range	T _J , T _{stg}	–65 to +150		°C	


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R _{θJC}	3.125	°C/W
Thermal Resistance, Junction-to-Ambient	R _{0JA}	62.5	°C/W

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

1.0 AMPERE POWER TRANSISTORS NPN SILICON 250-300-400 VOLTS 40 WATTS

N J S

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 1) ($I_C = 30 \text{ mAdc}, I_B = 0$)	TIP47 TIP48 TIP50	V _{CEO(sus)}	250 300 400	- - -	Vdc
Collector Cutoff Current $(V_{CE} = 150 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 200 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 300 \text{ Vdc}, I_B = 0)$	TIP47 TIP48 TIP50	ICEO		1.0 1.0 1.0	mAdc
Collector Cutoff Current ($V_{CE} = 350 \text{ Vdc}, V_{BE} = 0$) ($V_{CE} = 400 \text{ Vdc}, V_{BE} = 0$) ($V_{CE} = 500 \text{ Vdc}, V_{BE} = 0$)	TIP47 TIP48 TIP50	ICES		1.0 1.0 1.0	mAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	1.0	mAdc
ON CHARACTERISTICS (Note 1)			•		
DC Current Gain ($I_C = 0.3 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 1.0 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$)		h _{FE}	30 10	150 -	-
Collector–Emitter Saturation Voltage $(I_C = 1.0 \text{ Adc}, I_B = 0.2 \text{ Adc})$		V _{CE(sat)}	-	1.0	Vdc
Base–Emitter On Voltage (I _C = 1.0 Adc, V _{CE} = 10 Vdc)		V _{BE(on)}	-	1.5	Vdc
DYNAMIC CHARACTERISTICS			•		
Current–Gain – Bandwidth Product (I _C = 0.1 Adc, V_{CE} = 10 Vdc, f = 2.0 MHz)		f _T	10	-	MHz
Small–Signal Current Gain ($I_C = 0.2$ Adc, $V_{CE} = 10$ Vdc, f = 1.0 kHz)		h _{fe}	25	-	-
Dulas Testi Dulas width < 200 us. Duty Ovals < 2.0%			· · ·	-	-

1. Pulse Test: Pulse width \leq 300 µs, Duty Cycle \leq 2.0%.