RETOKO

75 Ω VIDEO LINE DRIVER

FEATURES

- Gain Set by External Components (6 dB typ.)
- Internal 75 Ω Drivers
- Active High ON/OFF Control
- **Very Low Standby Current (typ. I**_{STBY} \leq 25 μ A)
- Single +5 V Power Supply Operation

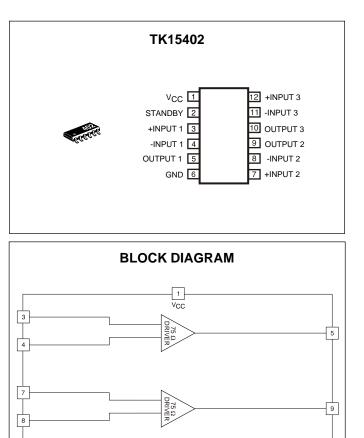
APPLICATIONS

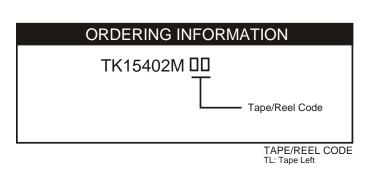
- RGB Video Line Driver Applications
- Video Equipment
- Digital Cameras
- CCD Cameras
- TV Monitors

12

11

STANDBY


2


- Video Tape Recorders
- LCD Projectors

DESCRIPTION

Operating from a single +5 V supply, the TK15402 is a triple video driver IC that takes standard video signals as analog inputs and provides buffered analog outputs for driving 150 Ω loads (series 75 Ω resistor and 75 Ω cable load). The standard video input signals (1 V_{P-P}) are typically amplified 6 dB using external components to produce a 2 V_{P-P} signal into an AC-coupled 150 Ω load. During standby (Pin 2 grounded), the TK15402 consumes only 113 μ W of power. Nominal power dissipation (no input) is typically 98 mW.

The TK15402M is available in the SSOP-12 Surface Mount Package.

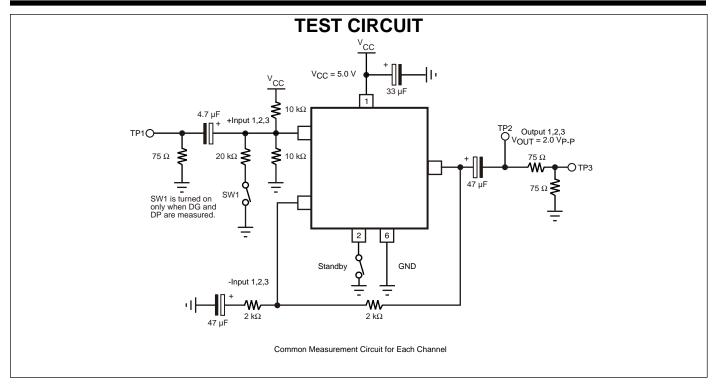
10

GND

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	6 V
Operating Voltage	4.5 to 5.5 V
Power Dissipation (Note 1)	350 mW

TK15402M ELECTRICAL CHARACTERISTICS


Test conditions: V_{CC} = 5.0 V, V_{IN} = 1.0 V_{P-P}, R_L = 150 Ω , T_A = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	ΤΥΡ	MAX	UNITS
I _{cc}	Supply Current	No input		19.5	27.0	mA
I _{stby}	Standby Supply Current	Pin 2 Grounded		22.5	50.0	μA
I _{os}	Standby Terminal Current	Indby Terminal Current Pin 2 Standby mode		22.5	50.0	μA
V _{THL}	Threshold Voltage (High to Low)	Pin 2 Operating to Standby mode	GND	0.1	0.3	V
V _{tlh}	Threshold Voltage (Low to High)	Pin 2 Standby to Operating mode	1.8 2.0		V _{cc}	V
GVA	Voltage Gain	f _{in} = 1 MHz (Note 2)	5.7	6.0	6.3	dB
£.,	Frequency Response	f _{in} = 1 MHz / 5 MHz		-0.1		dB
fr		f _{in} = 1 MHz / 10 MHz		-1.1		dB
THD	Total Harmonic Distortion	f _{IN} = 1.0 kHz		0.2	1.0	%
V _{OUT(MAX)}	Maximum Output Voltage	THD = 10% point	1.0	1.2		Vrms
СТ	Cross Talk	f _{in} = 1 MHz		-55	-40	dB
S/N	Signal to Noise Ratio	Pedestal signal		-70		dB
DG	Differential Gain	Staircase wave input	-3.0	-3.0		%
DP	Differential Phase	Staircase wave input	-3.0		+3.0	deg
GVO	Open Circuit Voltage Gain			40		dB
BW	Frequency Band Width			20		MHz
SR	Slew Rate			70		V/µS
C _{IN}	Input Capacitance			9		pF
R _{IN}	Input Resistance			1.6		MΩ

Note 1: Power dissipation is 350 mW in free air. Derate at 2.8 mW/°C for operation above 25°C.

Note 2: Set by external components.

TK15402

MEASUREMENT METHOD

1. Supply Current (I_{cc})

The Pin 1 current is measured with no input signal and the Standby Pin (Pin 2) open.

2. Standby Supply Current (I_{STBY})

The Pin 1 current is measured when the Standby Pin (Pin 2) is connected to ground.

3. Standby Terminal Current (I_{os})

The Pin 2 current is measured when Pin 2 is connected to ground.

4. Threshold Voltage (High to Low) (V_{THL})

The Pin 2 voltage is measured at the point which changes the device from operating mode into standby mode.

5. Threshold Voltage (Low to High) (V_{TLH}) The Pin 2 voltage is measured at the point which changes the device from standby mode into operating mode.

6. Voltage Gain (GVA) The voltage gain equation is as follows: $GVA = 20 \log_{10} V2/V1$ Where V1 is the input voltage at TP1 and V2 is the measured output voltage at TP2. V1 and V2 are measured for the other channels in the same manner.

7. Frequency Response (fr)

The frequency response equation is as follows:

 $fr = 20 \log_{10} V2/V1$

Where V1 is the measured TP2 voltage when the TP1 input frequency is set to 1 MHz and V2 is the measured TP2 voltage when the TP1 input frequency is set to 5 MHz. Furthermore, V1 is the measured TP2 voltage when the TP1 input frequency is set to 1 MHz and V2 is the measured TP2 voltage when the TP1 input frequency is set to 10 MHz. V1 and V2 are measured for the other channels in the same manner.

MEASUREMENT METHOD

8. Total Harmonic Distortion (THD)

The TP2 signal is measured when a 1 kHz 1 V_{P-P} input signal is applied to TP1. THD is measured for the other channels in the same manner.

9. Maximum Output Voltage (V_{OUT(MAX)})

A 1 kHz input signal is applied to TP1 and the amplitude is slowly increased. The output voltage at TP2 is measured at the point the THD reaches 10%.

 $V_{OUT(MAX)}$ is measured for the other channels in the same manner.

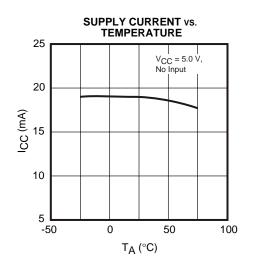
10. Cross Talk (CT) The cross talk equation is as follows:

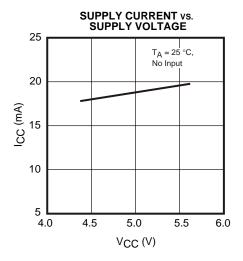
 $CT = 20 \log_{10} V1/V2$

Where V1 is measured at output 3 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 1 or input 2. V2 is measured at output 3 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. Furthermore, V1 is measured at output 2 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. Furthermore, V1 is measured at output 2 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. V2 is measured at output 2 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 4. V1 is measured at output 5 when a 1 MHz 1 $V_{p,p}$ input 3. V2 is measured at output 2 when a 1 MHz 1 $V_{p,p}$ input 3. V1 is measured at output 1 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. V2 is measured at output 1 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. V2 is measured at output 1 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. V2 is measured at output 1 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. V2 is measured at output 1 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. V2 is measured at output 1 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. V2 is measured at output 1 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3. V2 is measured at output 1 when a 1 MHz 1 $V_{p,p}$ input signal is applied to input 3.

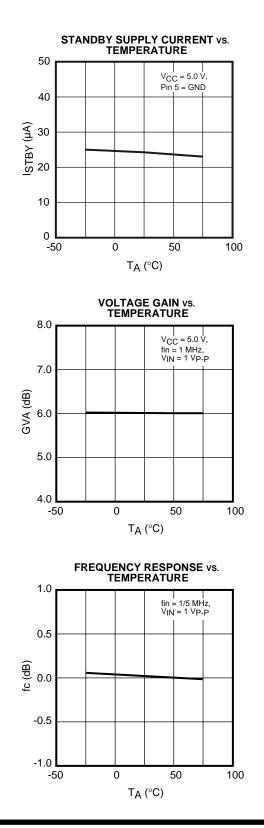
11. Signal to Noise Ratio (S/N)

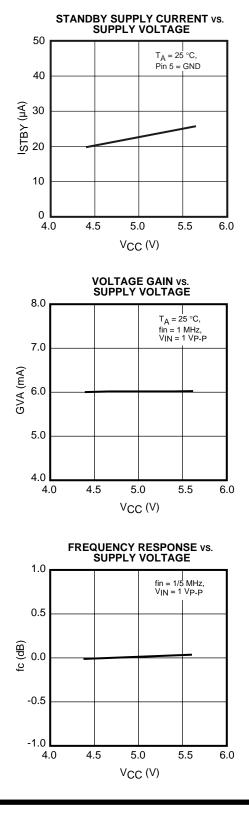
The signal to noise ratio is measured at TP3 when a pedestal input signal is applied to TP1.

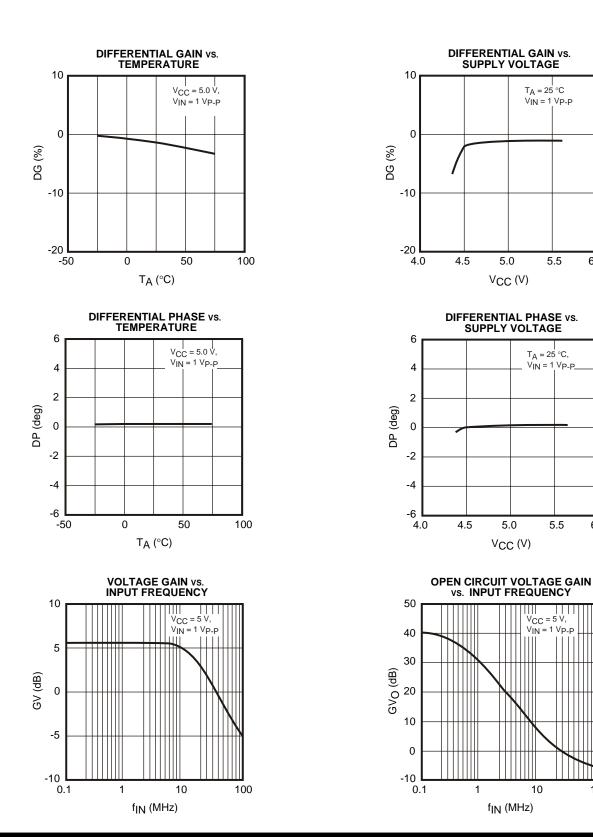

Differential Gain (DG)
SW1 is closed to change the input bias voltage.
The differential gain is measured at TP3 when a staircase waveform of 10 steps is applied to TP1.


13. Differential Phase (DP)

SW1 is closed to change the input bias voltage.


The differential phase is measured at TP3 when a staircase waveform of 10 steps is applied to TP1.


TYPICAL PERFORMANCE CHARACTERISTICS



TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)

100

T_A = 25 °C

5.0

VCC (V)

5.0

VCC (V)

VIN = 1 VP-P

5.5

T_A = 25 °C,

VIN = 1 VP-P_

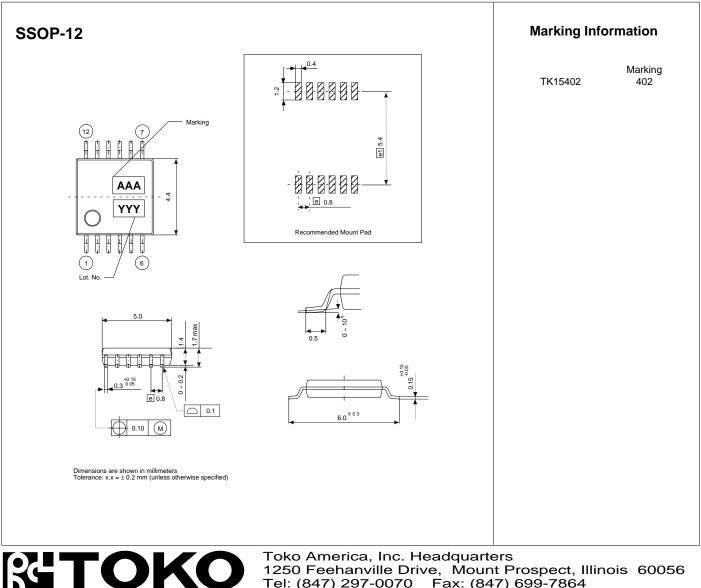
5.5

 $V_{CC} = 5 V,$ VIN = 1 VP-F

10

f_{IN} (MHz)

1


6.0

6.0

PIN FUNCTION DESCRIPTION

TERMINAL					
PIN NO.	SYMBOL	VOLTAGE	INTERNAL EQUIVALENT CIRCUIT	DESCRIPTION	
1	V _{cc}	V _{cc}		Power supply terminal	
2	STANDBY	1.4 V		Pin 2 is the standby logic terminal. The device is in the standby state when Pin 2 is pulled down to the low level. The device is in the operation mode when Pin 2 is connected to High or Open.	
3 7 12	+INPUT 1 +INPUT 2 +INPUT 3		v _{cc} ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	These pins are non- inverting input terminals.	
4 8 11	-INPUT 1 -INPUT 2 -INPUT 3		V _{CC}	These pins are inverting input terminals.	
5 9 10	OUTPUT 1 OUTPUT 2 OUTPUT 3			These pins are output terminals. These pins are available to drive 75 Ω + 75 Ω loads.	
6	GND	GND		GND terminal	

PACKAGE OUTLINE

1250 Feehanville Drive, Mount Prospect, Illinois 60056 Tel: (847) 297-0070 Fax: (847) 699-7864

TOKO AMERICA REGIONAL OFFICES

Midwest Regional Office Toko America, Inc. 1250 Feehanville Drive Mount Prospect, IL 60056 Tel: (847) 297-0070 Fax: (847) 699-7864

Western Regional Office Toko America, Inc. 2480 North First Street, Suite 260 San Jose, CA 95131 Tel: (408) 432-8281 Fax: (408) 943-9790

Eastern Regional Office Toko America, Inc. 107 Mill Plain Road Danbury, CT 06811 Tel: (203) 748-6871 Fax: (203) 797-1223

Semiconductor Technical Support **Toko Design Center** 4755 Forge Road Colorado Springs, CO 80907 Tel: (719) 528-2200 Fax: (719) 528-2375

Visit our Internet site at http://www.tokoam.com

The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.