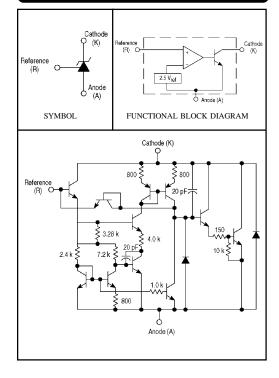
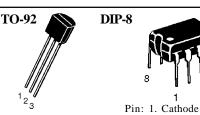
TL431 Programmable Precision References



The TL431 integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100mA with a typical dynamic impedance of 0.22 Ω . The characteristics of these references make them

FEATURES


- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance, 0.22 Ω Typical
- Sink Current Capability of 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C Typical
- Temperature Compensated for operation over
 Full Rated Operating Temperature Range
- Low Output Noise Voltage

CIRCUITSCHEMATIC

excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 volt reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the TL431 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

(PINARRANGEMENT

Pin: 1. Reference 2. Anode

Anode
 Reference
 Cathode
 Other Pins: NC

6. Anode

SOP-8

Pin: 1. Cathode 5. NC
2. Anode 6. Anode
3. Reference 7. Anode

3. Reference4. NC8. Reference

This SOP-8 is an internally modified SOP-8 Package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. This SOP-8 conforms to all external dimensions of the standard SOP-8 package.

ORDERING INFORMATION

Device	Temperature Range	Package
TL431CT	Kange	TO-92
TL431CD	0 to +70 °C	DIP-8
TL431CS		SOP-8
TL431IT		TO-92
TL431ID	-40 to +85 °C	DIP-8
TL431IS		SOP-8

$TL431\,Programmable\,Precision\,References$

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted.)

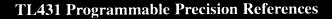
Rating	Symbol	Value	Unit
Cathode to Anode Voltage	V_{KA}	37	V
Cathode Current Range, Continuous	$I_{_{\rm K}}$	-100 to +150	mA
Reference Input Current Range, Continuous	$\mathbf{I}_{\mathrm{ref}}$	-0.05 to +10	mA
Operating Junction Temperature	T _J	150	°C
Operating Ambient Temperature Range TL431I, TL431AI, TL431BI TL431C, TL431AC, TL431BC	T _A	-40 to +85 0 to +70	°C
Storage Temperature Range	T_{stg}	-65 to +150	℃
	P _D	0.70 1.10	W
Total Power Dissipation @ $T_C = 25^{\circ}C$ Derate above $T_A = 25^{\circ}C$ Case Temperature T, S Suffix Packages D Suffix Package	P _D	1.5 3.0	W

THERMAL CHARACTERISTICS

Characteristic	Symbol	T, S Suffix	D Suffix	Unit
Thermal Resistance, Junction to Ambient	$R_{_{\theta JA}}$	178	114	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83	41	°C/W

(RECOMMENDED OPERATING CONDITIONS

Condition / Value	Symbol	Min	Max	Unit	
Thermal Resistance, Junction to Ambient	V_{KA}	Vref	36	V	
Thermal Resistance, Junction to Case	$I_{_{\rm K}}$	1.0	100	m A	

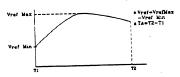

TL431 Programmable Precision References

ELECTRICAL CHARACTERISTICS (Ambient temperature at 25°C unless otherwise noted)

		TL431I			TL431C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Reference Input Voltage (Fig. 1) $V_{KA} = V_{ref}, I_K = 10mA$ $T_A = 25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)}$	$V_{\rm ref}$	2.44 2.41	2.495	2.55 2.58	2.44 2.423	2.495	2.55 2.567	V
Reference Input Voltage Deviation Over Temperature Range (Fig. 1, Note 1, 2, 4) $V_{KA} = V_{ref}, I_K = 10 \text{mA}$	ΔV_{ref}		7.0	30		3.0	17	mV
Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage $I_{K}=10mA~(Fig.~2), \\ \Delta V_{KA}=10V~to~V_{ref} \\ \Delta V_{KA}=36V~to~10V$	$rac{\Delta V_{ref}}{\Delta V_{KA}}$		-1.4 -1.0	-2.7 -2.0		-1.4 -1.0	-2.7 -2.0	mV/V
Reference Input Current (Fig. 2) $I_K = 10\text{mA}, R1 = 10\text{k}, R2 = \infty$ $T_A = 25^{\circ}\text{C}$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)}$	$I_{ m ref}$		1.8	4.0 6.5		1.8	4.0 5.2	μА
Reference Input Current Deviation Over Temperature Range (Fig. 2, Note 1, 4) $I_K = 10 \text{mA}, R1 = 10 \text{k}, R2 = \infty$	$\Delta I_{ m ref}$		0.8	2.5		0.4	1.2	μΑ
Minimum Cathode Current for Regulation $V_{KA} = V_{ref}$ (Fig. 1)	I_{min}		0.5	1.0		0.5	1.0	mA
Off - State Cathode Current (Fig. 3) $V_{KA} = 36V, V_{ref} = 0V$	$I_{ m off}$		260	1000		2.6	1000	nA
Dynamic Impedance (Fig. 1, Note 3) $V_{KA} = V_{ref}, \Delta I_K = 1.0mA \text{ to } 100mA, \\ f \leq 1.0 \text{ kHz}$	Z _{KA}		0.22	0.5		0.22	0.5	Ω

ELECTRICAL CHARACTERISTICS (Ambient temperature at 25°C unless otherwise noted)

		TL431AI		TL431AC			TL431B				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
$\begin{aligned} & \text{Reference Input Voltage (Fig. 1)} \\ & V_{KA} = V_{ref}, I_K = 10 \text{mA} \\ & T_A = 25^{\circ}\text{C} \\ & T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)} \end{aligned}$	V _{ref}	2.47 2.44	2.495 	2.52 2.55	2.47 2.453	2.495	2.52 2.537	2.483 2.475	2.495 2.495	2.507 2.515	V
Reference Input Voltage Deviation Over Temperature Range (Fig. 1, Note 1, 2, 4) $V_{KA} = V_{ref}, I_K = 10 mA$	ΔV_{ref}		7.0	30		3.0	17		3.0	17	mV
$ \begin{aligned} & \text{Ratio of Change in Reference Input Voltage} \\ & \text{to Change in Cathode to Anode Voltage} \\ & I_K = 10 \text{mA (Fig. 2)}, \\ & \Delta V_{KA} = 10 \text{V to V}_{\text{ref}} \\ & \Delta V_{KA} = 36 \text{V to } 10 \text{V} \end{aligned} $	$\frac{\Delta V_{ref}}{\Delta V_{KA}}$		-1.4 -1.0	-2.7 -2.0		-1.4 -1.0	-2.7 -2.0		-1.4 -1.0	-2.7 -2.0	mV/V
$\begin{aligned} & \text{Reference Input Current (Fig. 2)} \\ & I_K = 10\text{mA}, R1 = 10\text{k}, R2 = \infty \\ & T_A = 25^{\circ}\text{C} \\ & T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)} \end{aligned}$	I _{ref}		1.8	4.0 6.5		1.8	4.0 5.2		1.1	2.0 4.0	μА
Reference Input Current Deviation Over Temperature Range (Fig. 2, Note 1, 4) $I_K = 10 \text{mA}, R1 = 10 \text{k}, R2 = \infty$	ΔI_{ref}		0.8	2.5		0.4	1.2		0.4	1.2	μΑ
$\begin{aligned} & \text{Minimum Cathode Current for Regulation} \\ & V_{KA} = V_{ref} \ \ (\text{Fig. 1}) \end{aligned}$	I _{min}		0.5	1.0		0.5	1.0		0.5	1.0	mA
Off - State Cathode Current (Fig. 3) V _{KA} = 36V, V _{ref} = 0V	$I_{ m off}$		260	1000		260	1000		230	500	nA
$\label{eq:continuous} \begin{array}{l} \mbox{Dynamic Impedance (Fig. 1, Note 3)} \\ V_{KA} = V_{ref}, \Delta I_{K} = 1.0 mA \mbox{ to } 100 mA, \\ f \leq 1.0 \mbox{ kHz} \end{array}$	ZKA		0.22	0.5		0.22	0.5		0.14	0.3	Ω


1

$$T_{low} = 0\%$$
, $T_{high} = +70\%$

2

The deviation parameter
$$\triangle V_{ref}$$
 is defined as the

The deviation parameter $\triangle V_{ref}$ is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range the applies.

The average temperature coefficient of the reference input voltage, α $V_{\rm ref}$, is defined as :

$$\alpha \text{Vref} \frac{\text{ppm}}{\gamma} = \frac{\left(\frac{\Delta \text{ V}_{\text{ref}}}{\text{V}_{\text{ref}} @25 \gamma}\right) \times 10^6}{\Delta \text{ T}_{\text{A}}} = \frac{\Delta \text{ V}_{\text{ref}} \times 10^6}{\Delta \text{ T}_{\text{A}} (\text{Vref} @25 \gamma)}$$

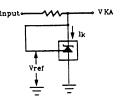
 αV_{ref} can be positive of negative depending on whether V_{ref} Min of V_{ref} Max occurs at the lower ambient temperature. (Refer to Figure 6)

Example: $\triangle V_{ref} = 8.0 \text{ mV}$ and slope is positive, $V_{ref} @ 25\% = 2.495\text{V}$, $\triangle T_A = 70\% \\ 0.008 \times 10^6$ $\triangle V_{ref} = \frac{0.008 \times 10^6}{0.008 \times 10^6} = 45.8 \text{ ppm/}\%$

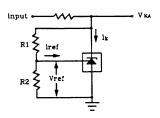
3

The dynamic impedance Z_{ka} is defined as:

70(2.495)


$$|Zka| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:


4

This test is not applicable to surface mount (D suffix) devices.

FIGURE 1 -- TEST CIRCUIT FOR VKA = Vrof

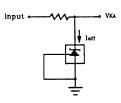


FIGURE 2 -- TEST CIRCUIT FOR VKA > Vrof

$$V_{KA} = V_{ref} \left(1 + \frac{R1}{R2} \right) + I_{ref} \cdot R1$$

FIGURE 3 -- TEST CIRCUIT FOR Ion

FIGURE 4- CATHODE CURRENT VERSUS CATHODE VOLTAGE

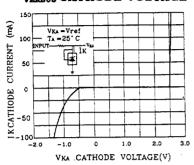


FIGURE 6 - REFERENCE INPUT VOLTAG VERSUS AMBIENT TEMPERATURE

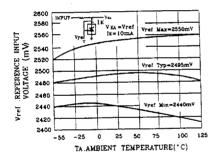


FIGURE 8 - CHANGE IN REFERENCE INPUT VOLTAGE VERBUS CATHODE VOLTAGE

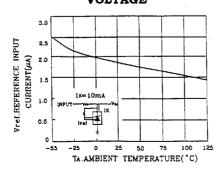


FIGURE 5 -CATHODE CURRENT VERSUS CATHODE VOLTAGE

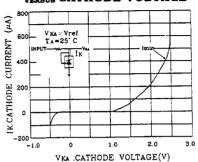


FIGURE 7- REFERENCE INPUT CURRENT VERBUS AMBIENT TEMPERATURE

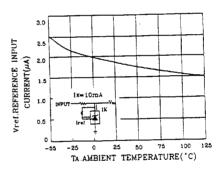
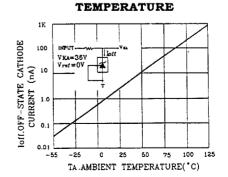
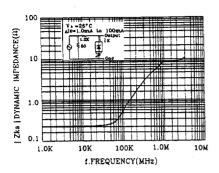
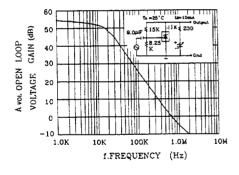




FIGURE 9 - OFF. STATE CATHODE CURRENT _{VERSUS} AMBIENT



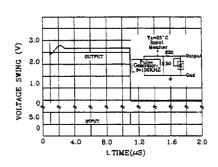

FIGURE 10 - DYNAMIC IMPEDANCE VERSUS FREQUENCY

FIGURE 12 - OPEN LOOP VOLTAGE GAIN VERSUS FREQUENCY

FIGURE 14 - PULSE RESPONSE

FIGURE 11 - DYNAMIC IMPEDANCE VERBUS AMBIENT TEMPERATURE

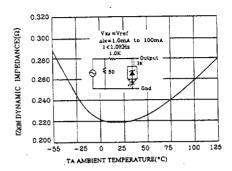
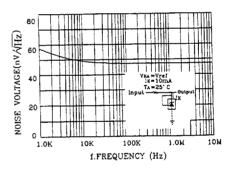
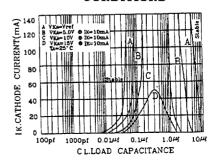
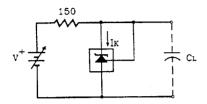




FIGURE 13 - SPECTRAL NOISE DENSITY


FIGURE 15 - STABILITY BOUNDARY CONDITIONS

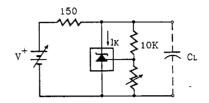


FIGURE 16-TEST CIRCUIT FOR CURVE A OF STABILITY BOUNDARY CONDITIONS

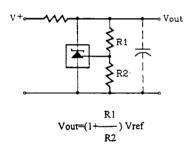
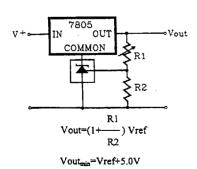


FIGURE 17-TEST CIRCUIT FOR CURVES B.C. AND D OF STABILITY BOUNDARY CONDITIONS



TYPICAL APPLICATIONS


FIGURE 18-SHUNT REGULATOR

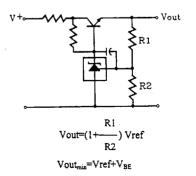

FIGURE 19-HIGH CURRENT SHUNT REGULATOR

FIGURE 20-OUTPUT CONTROL OF A THREE-TERMINAL FIXED REGULATOR

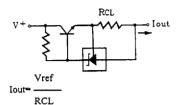
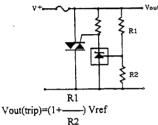
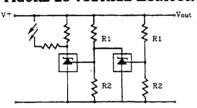
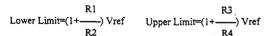
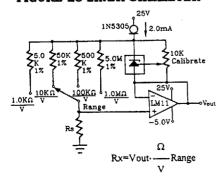


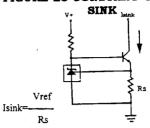
FIGURE 21-SERIES PASS REGULATOR

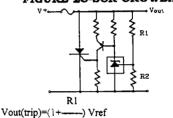


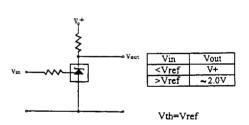

FIGURE 22-CONSTANT CURRENT SOURCE


FIGURE 24-TRIAC CROWBAR


FIGURE 26-VOLTAGE MONITOR


L.E.D. indicator is "on" when V+ is between the upper and lower limits.


FIGURE 28-LINER OHMMETER


FIGURE 23-CONSTANT CURRENT

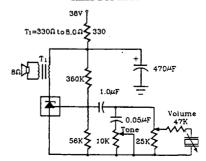

FIGURE 25-SCR CROWBAR

FIGURE 27-SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD

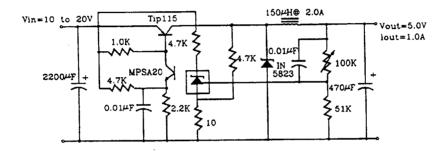


FIGURE 29-SIMPLE 400mW PHONO AMPLIFIER

FIGURE 30-HIGH EFFICIENCY STEP-DOWN SWITCHING CONVERTER

TEST	CONDITIONS	RESULTS
Line Regulation	Vin=10V to 20V, Io=1.0A	53mV (1.1%)
Load Regulation	Vin=15V, Io=0A to 1.0A	25mV (0.5%)
Output Ripple	Vin=10V,Io=1.0A	50mVp-p P.A.R.D.
Output Ripple	Vin=20V, Io=1.0A	100mVp-p P.A.R.D.
Efficiency	Vin=15V, Io=1.0A	82%