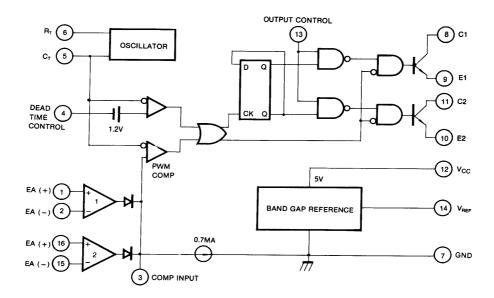

TL494 SMPS Controller

Features


- Internal regulator provides a stable 5V reference supply trimmed to 5%
- Uncommitted output TR for 200mA sink or source current
- Output control for push-pull or single-ended operation
- Variable duty cycle by dead time control (pin 4) Complete PWM control circuit
- On-chip oscillator with master or slave operation
- Internal circuit prohibits double pulse at either output

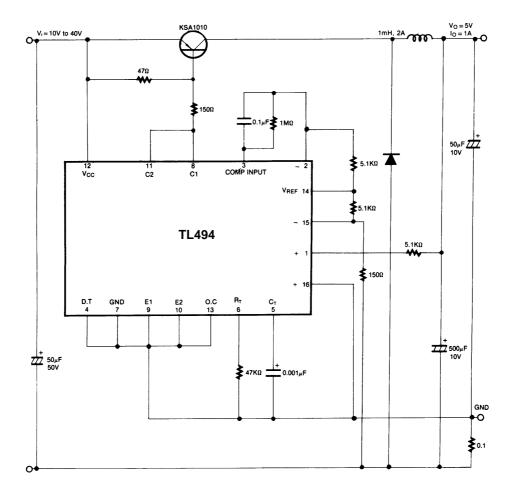
Description

The TL494 is used for the control circuit of the PWM switching regulator. The TL494 consists of 5V reference voltage circuit, two error amplifiers, flip flop, an output control circuit, a PWM comparator, a dead time comparator and an oscillator. This device can be operated in the switching frequency of 1 KHz to 300 KHz.

Internal Block Diagram

Absolute Maximum Ratings

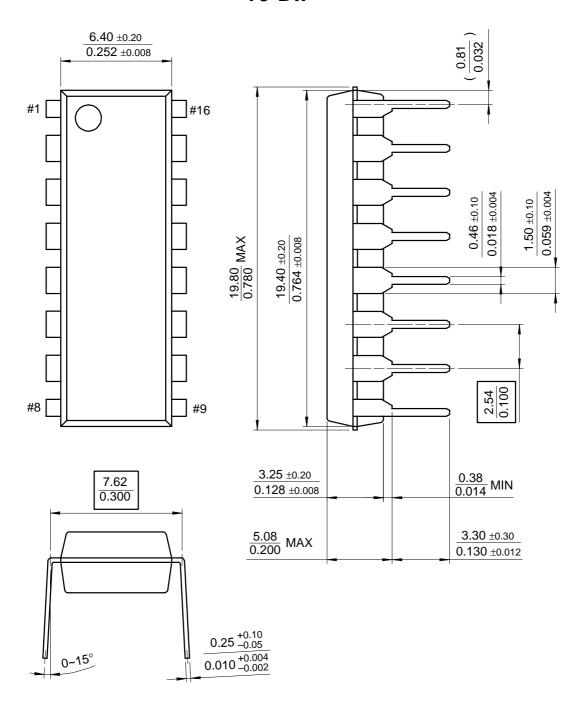
Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	42	V
Collector Supply Voltage	Vc	42	V
Output Current	lo	250	mA
Amplifier Input Voltage	VIN	VCC + 0.3	V
Power Dissipation (T _A = 25°C)	PD	1 (TL494CN) 0.9 (TL494CD)	W
Operating Temperature Range	Topr	0 ~ +70	°C
Storage Temperature Range	Tstg	-65 ~ + 150	°C


Electrical Characteristics

 $(V_{CC} = 20V, f = 10KHz, T_A = 0^{\circ}C \text{ to} + 70^{\circ}C, \text{ unless otherwise specified})$

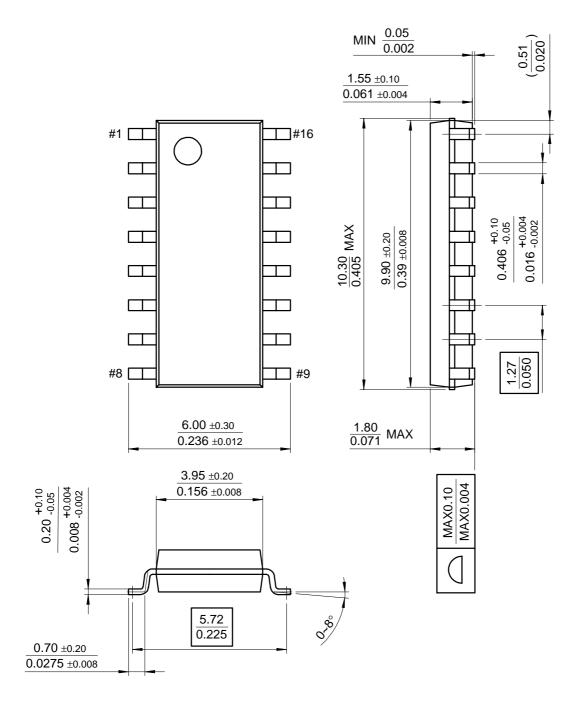
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
REFERENCE SECTION			-					
Reference Output Voltage	VREF	IREF = 1mA	4.75	5.0	5.25	V		
Line Regulation	ΔVREF	Vcc = 7V to 40V	-	2.0	25	mV		
Temperature Coefficient of VREF	ΔVREF/ΔT	$T_A = 0$ °C to 70 °C	-	0.01	0.03	%/°C		
Load Regulation	ΔV_{REF}	IREF = 1mA to 10mA	-	1.0	15	mV		
Short-Circuit Output Currnet	Isc	VREF = 0V	10	35	50	mA		
OSCILLATOR SECTION								
Oscillation Frequency	f	$C_T = 0.01 \mu F, R_T = 12 K\Omega$	-	10	-	KHz		
Frequency Change with Temperature	Δf/ΔΤ	$C_T = 0.01 \mu F, R_T = 12 K\Omega$	-	-	2	%		
DEAD TIME CONTROL SECTION								
Input Bias Current	IBIAS	VCC = 15V, 0V≤V4≤5.25V	-	-2.0	-10	μΑ		
Maximum Duty Cycle	D _(MAX)	V _{CC} = 15V, V ₄ = 0V O.C Pin = V _{REF}	45	-	-	%		
Input Threshold Voltage	VITH	Zero Duty Cycle	-	3.0	3.3	V		
		Max. Duty Cycle	0	-	-			
ERROR AMP SECTION				I	I			
Input Offset Voltage	Vio	V ₃ = 2.5V	-	2.0	10	mV		
Input Offset Current	lιο	V ₃ = 2.5V	-	25	250	mA		
Input Bias Current	IBIAS	V3 = 2.5V	-	0.2	1.0	μΑ		
Common Mode Input Voltage	Vсм	7V ≤ V _C C ≤ 40V	-0.3	-	Vcc	V		
Open-Loop Voltage Gain	Gvo	0.5V ≤ V ₃ ≤3 .5V	70	95	-	dB		
Unit-Gain Bandwidth	BW	-	-	650	-	KHz		
PWM COMPARATOR SECTION			•					
Input Threshold Voltage	VITH	Zero Duty Cycle	-	4	4.5	V		
Input Sink Currnet	ISINK	V ₃ =0.7V	-0.3	-0.7	-	mV		
OUTPUT SECTION								
Output Saturation Voltage Common Emitter	VCE(SAT)	VE = 0, IC = 200mA	-	1.1	1.3	V		
Common Collector	VCC(SAT)	Vc = 15V, IE = -200mA	-	1.5	2.5	V		
Collector Off-State Currnet	IC(OFF)	VCC = 40V, VCE = 40V	-	2	100			
Emitter Off-State Current	IE(OFF)	VCC = VC = 40V, VE = 0	-	-	-100	μΑ		
TOTAL DEVICE								
Supply Current	Icc	Pin 6 = VREF, VCC = 15V	-	6	10	mA		
OUTPUT SWITCHING CHARACTERISTIC								
Rise Time	tR	-	-	-	-	-		
Common Emitter	-	-	-	100	200	no		
Common Collector	-	-	-	100	200	ns		
Fall Time	tF	-	-	_	-	-		
Common Emitter	-	-	-	25	100	ne		
Common Collector	-	-	-	40	100	ns		

Typical Application


Pulse Width Modulated Step-down Converter

Mechanical Dimensions

Package


16-DIP

Mechanical Dimensions (Continued)

Package

16-SOP

Ordering Information

Product Number	Package	Operating Temperature	
TL494CN	16 DIP	0 ~ + 70°C	
TL494CD	16 SOP	0~+700	

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com