

TMR2501

Z-axis TMR linear sensor

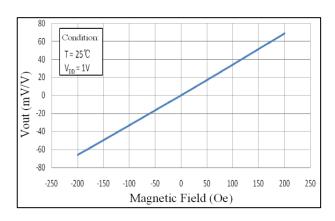
General Description

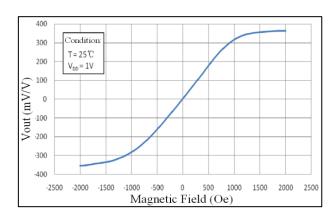
The TMR2501 linear sensor utilizes a unique push-pull Wheatstone bridge composed of four unshielded TMR sensor elements. The unique bridge design provides a high sensitivity differential output that is linearly proportional to a magnetic field applied perpendicular to the surface of the sensor package, and it provides superior temperature compensation of the output. The TMR2501 is available in the TO94 and SSIP4 packages.

Features and Benefits

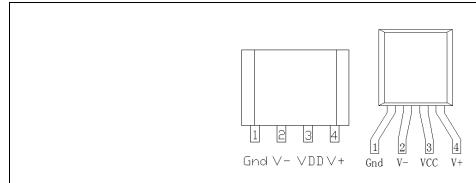
- Tunneling Magneto resistance (TMR) Technology
- High Sensitivity
- Large Dynamic Range
- Low Power Consumption
- Excellent Thermal Stability
- Very Low Hysteresis
- Compatible with wide Range of Supply Voltages

Applications


- Magnetic Field Sensing
- Current Sensors
- Position and Displacement Sensing



TMR2501


Transfer Curve

The following figure shows the response of the TMR2501 to an applied magnetic field in the range of ±200 Oe(left) and ±1000 Oe (right) when the TMR2501 is biased at 1V.

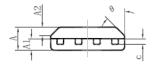
Pin Configuration

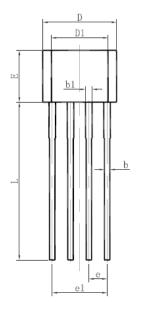
Pin No.	Pin Name	Pin Function	
1	GND	Ground	
2	Vout-	Analog Differential Output 1	
3	V_{DD}	Supply Voltage	
4	Vout+	Analog Differential Output 2	

Absolute Maximum Ratings

Parameter	Symbol	Limit	Unit
Supply Voltage	V_{DD}	7	V
Reverse Supply Voltage	V_{RDD}	-7	V
Max Exposed Field	H _E	4000	Oe ⁽¹⁾
ESD Voltage	V_{ESD}	4000	V
Operating Temperature	T _A	-55~150	°C
Storage Temperature	T_{stg}	-70 ~165	°C

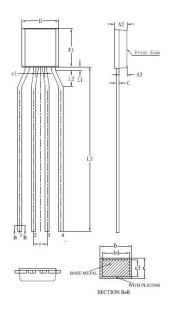
Specification (V_{CC} =1.0V, T_A =25 $^{\circ}$ C, Differential Output)

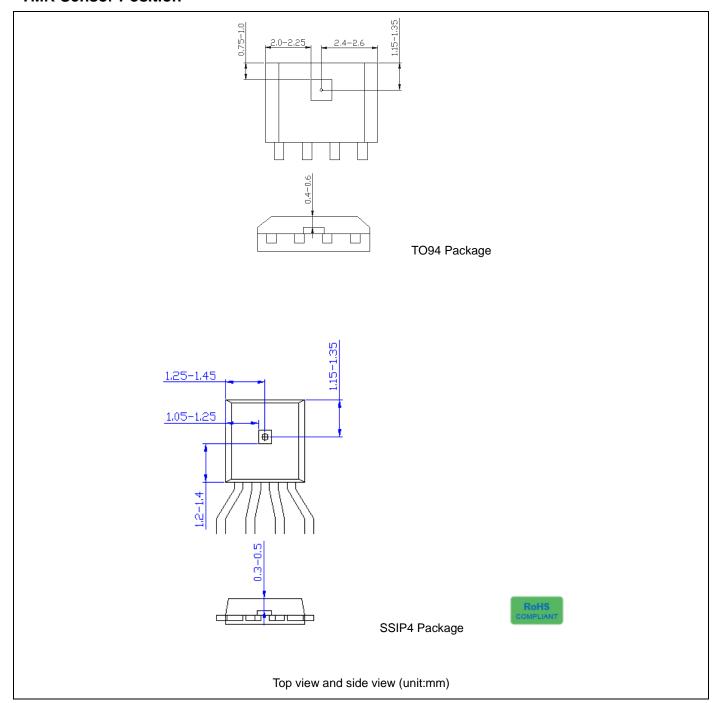

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	Vcc	Operating		1	7	V
Supply Current	Icc	Output Open			1.5 ⁽²⁾	mA
Resistance(SOP8)	R				7 ^(2,3)	KOhm
Sensitivity	SEN	Fit @ ±200 Oe	0.2		0.5	mV/V/Oe
Saturation Field	H _{sat}			±1000		Oe
Non Lincarity	NONL	Fit @±100 Oe		0.5		%FS
Non-Linearity		Fit @ ±500 Oe		1.5		%FS
Offset Voltage	V _{offset}		-10		10	mV/V
Hysteresis	Hys	Fit @±100 Oe			1	Oe
Temperature Coefficient of Resistance	TCR	H = 0 Oe		-365		PPM/°C
Temperature Coefficient of Offset	TCO	-55°C~150°C		-0.015		mV/V/°C
Temperature Coefficient of Sensitivity	TCS	-55°C~150°C	-0.005		0.005	mV/V/G


Notes:

- (1) 1 Oe (Oersted) = 1 Gauss in air = 0.1 millitesla = 79.8 A/m.
- (2) Icc= Vcc/ R. (3) Custom resistance may be available upon request.

Package Information


TO94 package drawing:


Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max Mi		lin Max	
Α	1.400	1.800	0.055	0.071	
A1	0.700	0.900	0.028	0.035	
A2	0.500	0.700	0.020	0.028	
b	0.360	0.500	0.014	0.020	
b1	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.980	5.280	0.196	0.208	
D1	3.780	4.080	0.149	0.161	
E	3.450	3.750	0.136	0.148	
e	1.270 TYP		0.050 TYP		
e1	3.710	3.910	0.146	0.154	
L	14.900	15.300	0.587	0.602	
θ	45° TYP		45° TYP		

SSIP4 package drawing:

SYMBOL	MILLIMETER				
	MIN	NOM	MAX		
A2	0.80	0.90	1.00		
A3	0.55	0.60	0.65		
ь	0.28	<u>-</u>	0.38		
ь1	0.27	0.30	0.33		
с	0.20	75_25	0.26		
c1	0.19	0.20	0.21		
D	2.85	2.90	2.95		
E1	2.70	2.80	2.90		
L1	0.20 0.25 0		0.30		
L.2	1.10 1.20 1		1.30		
L3	11.80	12.00	12.20		
e	1.00BSC				
e1	0.64BSC				

TMR Sensor Position

MultiDimension Technology Co., Ltd.

Address:No.7 Guangdong Road, Zhangjiagang Free Trade Zone, Jiangsu, 215634, China

Web: www.dowaytech.com/en Email: info@dowaytech.com

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.