# Supertex inc.



### N-Channel Enhancement-Mode Vertical DMOS FETs

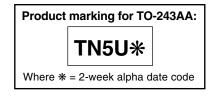
#### **Ordering Information**

| BV <sub>DSS</sub> / | R <sub>DS(ON)</sub> | I <sub>D(ON)</sub> | V <sub>GS(th)</sub><br>(max) | Order Number /Package |                  |  |
|---------------------|---------------------|--------------------|------------------------------|-----------------------|------------------|--|
| BV <sub>DGS</sub>   | (max)               | (min)              |                              | TO-243AA*             | Die <sup>†</sup> |  |
| 18V                 | 2.5Ω                | 250mA              | 1.0V                         | TN2501N8              | TN2501ND         |  |

\*Same as SOT-89. Product supplied on 2000 piece carrier tape reels. <sup>†</sup>MIL visual screening available.

### Features

- Low threshold
- □ High input impedance
- □ Low input capacitance 110pF max.
- □ Fast switching speeds
- Low on resistance
- □ Free from secondary breakdown
- Low input and output leakage

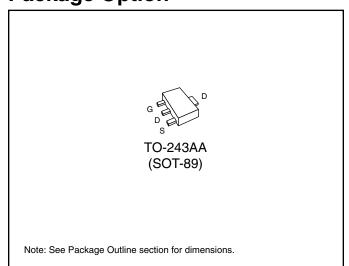

### **Applications**

- □ Logic level interfaces ideal for TTL and CMOS
- Solid state relays
- Battery operated systems
- Photo voltaic drives
- Analog switches
- General purpose line drivers
- Telecom switches

## **Absolute Maximum Ratings**

| Drain-to-Source Voltage           | $BV_{DSS}$        |
|-----------------------------------|-------------------|
| Drain-to-Gate Voltage             | BV <sub>DGS</sub> |
| Gate-to-Source Voltage            | ± 15V             |
| Operating and Storage Temperature | -55°C to +150°C   |
| Soldering Temperature*            | 300°C             |

\*Distance of 1.6 mm from case for 10 seconds.




# Low Threshold DMOS Technology

These low threshold enhancement-mode (normally-off) transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

### **Package Option**



11/12/01

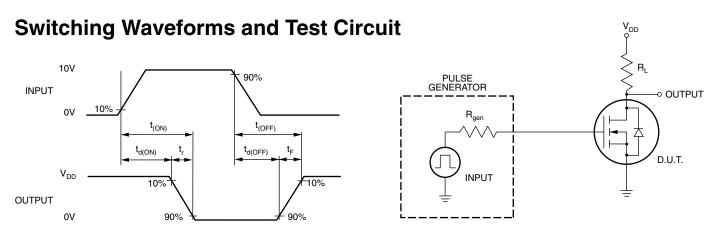
Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.

# **Thermal Characteristics**

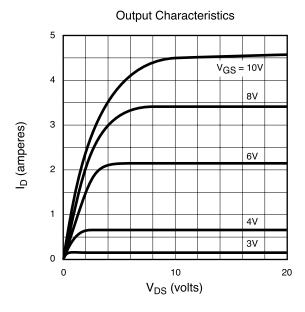
| Package  | I <sub>D</sub> (continuous)* | l <sub>D</sub> (pulsed) | Power Dissipation<br>@ T <sub>A</sub> = 25°C | θ <sub>jc</sub><br>°C/W | θ <sub>ja</sub><br>°C/W | I <sub>DR</sub> * | I <sub>DRM</sub> |
|----------|------------------------------|-------------------------|----------------------------------------------|-------------------------|-------------------------|-------------------|------------------|
| TO-243AA | 400mA                        | 560mA                   | 1.6W <sup>†</sup>                            | 15                      | 78 <sup>†</sup>         | 560mA             | 750mA            |

\*

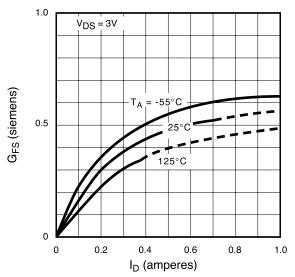
\* I<sub>D</sub> (continuous) is limited by max rated T<sub>j</sub>.
† Mounted on FR5 board, 25mm x 25mm x 1.57mm. Significant P<sub>D</sub> increase possible on ceramic substrate.


### Electrical Characteristics (@ 25°C unless otherwise specified)

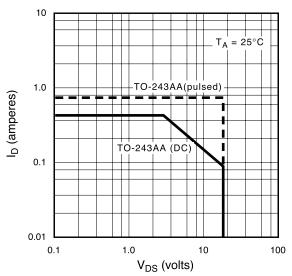
| Symbol              | Parameter                                      | Min  | Тур | Max  | Unit  | Conditions                                                  |  |
|---------------------|------------------------------------------------|------|-----|------|-------|-------------------------------------------------------------|--|
| BV <sub>DSS</sub>   | Drain-to-Source Breakdown Voltage              | 18   |     |      | V     | $V_{GS} = 0V, I_{D} = 1.0mA$                                |  |
| V <sub>GS(th)</sub> | Gate Threshold Voltage                         | 0.3  |     | 1.0  | V     | $V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$                      |  |
| $\Delta V_{GS(th)}$ | Change in $V_{GS(th)}$ with Temperature        |      |     | -4.0 | mV/°C | $V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$                      |  |
| I <sub>GSS</sub>    | Gate Body Leakage                              |      |     | 100  | nA    | $V_{GS} = \pm 15V, V_{DS} = 0V$                             |  |
| I <sub>DSS</sub>    | Zero Gate Voltage Drain Current                |      |     | 10   | μΑ    | $V_{GS} = 0V, V_{DS} = Max Rating$                          |  |
|                     |                                                |      |     | 1.0  | mA    | $V_{GS} = 0V, V_{DS} = 0.8$ Max Rating $T_A = 125^{\circ}C$ |  |
| I <sub>D(ON)</sub>  | ON-State Drain Current                         | 250  | 600 |      | mA    | $V_{GS} = V_{DS} = 3.0V$                                    |  |
| R <sub>DS(ON)</sub> | Static Drain-to-Source<br>ON-State Resistance  |      |     | 25   | Ω     | $V_{GS} = 1.2V, I_{D} = 3.0mA$                              |  |
|                     |                                                |      |     | 3.5  |       | $V_{GS} = 2.0V, I_{D} = 50mA$                               |  |
|                     |                                                |      |     | 2.5  |       | $V_{GS} = 3.0V, I_{D} = 200mA$                              |  |
| $\Delta R_{DS(ON)}$ | Change in R <sub>DS(ON)</sub> with Temperature |      |     | 0.75 | %/°C  | $V_{GS} = 3.0V, I_{D} = 200mA$                              |  |
| G <sub>FS</sub>     | Forward Transconductance                       | 0.15 | 0.3 |      | 5     | $V_{DS} = 3.0V, I_{D} = 200mA$                              |  |
| C <sub>ISS</sub>    | Input Capacitance                              |      |     | 110  |       |                                                             |  |
| C <sub>OSS</sub>    | Common Source Output Capacitance               |      |     | 60   | pF    | V <sub>GS</sub> = 0V, V <sub>DS</sub> = 15V<br>f = 1 MHz    |  |
| C <sub>RSS</sub>    | Reverse Transfer Capacitance                   |      |     | 35   |       |                                                             |  |
| t <sub>d(ON)</sub>  | Turn-ON Delay Time                             |      |     | 5.0  |       |                                                             |  |
| t <sub>r</sub>      | Rise Time                                      |      |     | 15   |       | $V_{DD} = 15V,$                                             |  |
| t <sub>d(OFF)</sub> | Turn-OFF Delay Time   Fall Time                |      |     | 15   | - ns  | $I_{\rm D} = 250 {\rm mA},$                                 |  |
| t <sub>f</sub>      |                                                |      |     | 8.0  |       | $R_{GEN} = 25\Omega$                                        |  |
| V <sub>SD</sub>     | Diode Forward Voltage Drop                     |      | 1.1 | 1.8  | V     | $V_{GS} = 0V$ , $I_{SD} = 200mA$                            |  |
| t <sub>rr</sub>     | Reverse Recovery Time                          |      | 100 |      | ns    | $V_{GS} = 0V, I_{SD} = 200mA$                               |  |

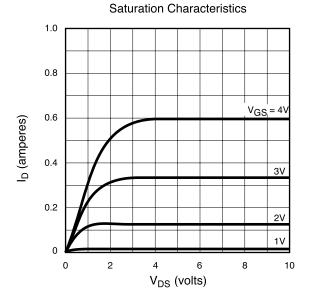

Notes:

1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µsec pulse, 2% duty cycle.)

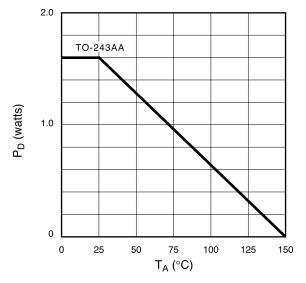

2. All A.C. parameters sample tested.



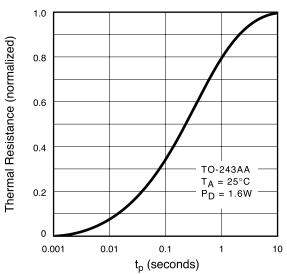

#### **Typical Performance Curves**




Transconductance vs. Drain Current

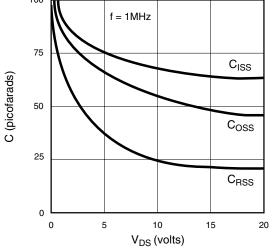



Maximum Rated Safe Operating Area

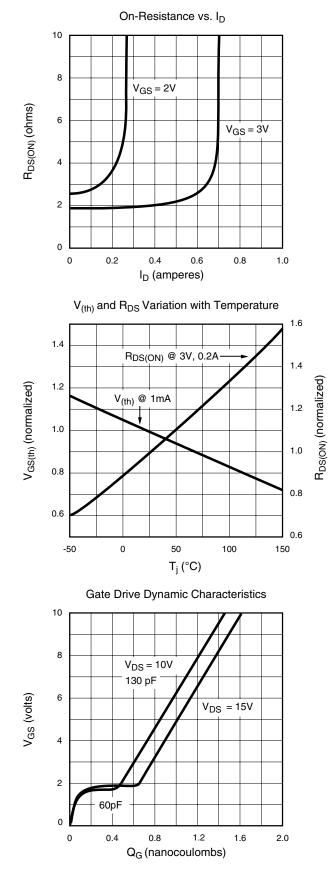





Power Dissipation vs. Ambient Temperature




Thermal Response Characteristics




#### **Typical Performance Curves**









11/12/01

©2001 Supertex Inc. All rights reserved. Unauthorized use or reproduction prohibited.