TPD1009S

• High-Side Power Switch for Motor, Solenoid and Lamp Drive Applications

TPD1009S is a monolithic power IC for high-side switches. The IC has a vertical MOSFET output which can be directly driven from a CMOS or TTL logic circuit (e.g., an MPU). The device offers intelligent self-protection and diagnostic functions.

Features

- A monolithic power IC with a new structure combining a control block (Bi-CMOS) and a vertical power MOSFET (π-MOS) on a single chip.
- One side of load can be grounded to a high-side switch.
- Can directly drive a power load from a micriprocessor.
- Built-in protection against thermal shutdown and load short circuiting.
- Incorporates a diagnosis function that allows diagnosis output to be read externally at load short circuiting, opening, or overtemperature.
- Up to -10 V of counterelectromotive force from an L load can be applied.
- Low ON-resistance: RON = 60 mΩ
 (max)
- Low operating current: IDD = 1 mA
- (typ.) (@ VDD = 12 V, VIN = 0 V)
- 5-pin TO-220 insulated package
 Three standard lead configurations

Timing Chart

Maximum Rating($T_a = 25^{\circ}C$)

Characteris	tic	Symbol	Rating	Unit						
Drain-Source Voltag	е	VDS	60	V						
Supply Veltage DC		V _{DD} (1)	25	V						
Supply voltage	Pulse	V _{DD} (2)	60 (Rs = 1 Ω , τ = 250 ms)	V						
	DC	VIN (1)	-0.5 to 12	V						
input voltage	Pulse	VIN (2)	$V_{DD}(1) + 1.5 (t = 100 ms)$							
Diagnosis Output Vo	oltage	VDIAG	-0.5 to 25	V						
Output Current		IO	Internally limited	A						
Input Current		lin	±10	mA						
Diagnosis Output Current		IDIAG	5	mA						
Davies Dississation	$T_{C} = 25^{\circ}C$	P _D (1)	30	14/						
Power Dissipation	T _a = 25°C	PD (2)	2	٧V						
Operating Temperature		Topr	-40 to 110	°C						
Junction Temperature		Tj	150	°C						
Storage Temperature		Tstg	-55 to 150	°C						
Lead Temperature / Time		TSOL	275 (5 s), 260 (10 s)	°C						

Electrical Characteristics ($T_j = -40$ to $110^{\circ}C$, $V_{DD} = 8$ to 18 V)

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit		
Operating Supply Voltage		VDD(opr)		5	12	18	V		
Supply Current ID		IDD	V _{DD} = 12 V, V _{IN} = 0 V	_	1	5	mA		
Input Voltage		VIH	VDD = 12 V, IO = 8 A	3.5	—	_	v		
		VIL	V _{DD} = 12 V, I _O = 1.2 mA	—	—	1.5			
Input Current		I _{IN} (1)	$V_{DD} = 12 V, V_{IN} = 5 V$	—	50	200	μA		
		I _{IN} (2)	$V_{DD} = 12 V, V_{IN} = 0 V$	-0.2	—	0.2			
On-Voltage		VDS(ON)		_	—	0.48	V		
On-Resistance		RDS(ON)	$VDD = 12 V$, $IO = 8 A$, $I_j = 25 C$	_	—	0.06	Ω		
Output Leakage Current		IOL	V _{DD} = 18 V, V _{IN} = 0 V	_	—	1.2	mA		
Diagnosis Output Voltage "L" Level		VDL	$V_{DD} = 12 \text{ V}, \text{ I}_{DL} = 2 \text{ mA}$	—	—	0.4	V		
Diagnosis Output Current "H" Level		IDH	V _{DD} = 18 V, V _{DH} = 18 V	—	—	10	μA		
Overcurrent Protection		IS (1) (Note 1)	$120 - 121$ $- 25^{\circ}$	8	12	—	A		
		IS (2) (Note 2)	$v_{DD} = 12 v, T_j = 25 C$	15	24	—			
Thermal	Temperature	9	Τ _S		150	160	200	°C	
Shutdown	Hysteresis		ΔTS	-	—	10	—	U	
Open Detection Resistance Ro		Rops	V _{DD} = 8 V	1	50	100	kΩ		
Switching Time		ton	$V_{22} = 12 V_{22} B_{12} = 5 \Omega_{12} T_{12} = 25^{\circ} \Omega_{12}$	10	200	_	μs		
		tOFF	$v_{DD} = 12 v, R_{L} = 522, 1j = 25^{\circ}C$	10	30	_			

Note1 : IS (1) Overcurrent detection value when load is short circuited and VIN = "L" \rightarrow "H"

Note2 : IS (2) Overcurrent detection value when load current is increased while V_{IN} = "H"