

SOP-8 Pin Definition:

1. EN 8. NC 2. Vcc 7. GND 3. FB 6. Gate 4. SS 5. Sense

General Description

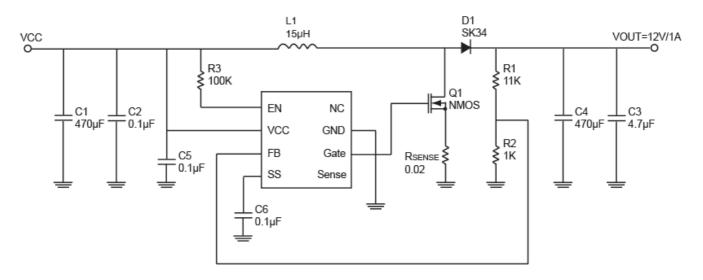
The TS19375 is high efficient PWM step-up controller. Designed to drive an external N-channel MOSFET, Output voltage is programmable with 1.0V of standard voltage supply internal, and using externally connected components, output voltage (FB) can be set up at will.

The TS19375 can be operated at switching frequencies of 500kHz allowing for easy filtering and low noise, the size of the external components can be reduced. An enable function and thermal shutdown functions are built inside. The soft-start time can be programmed by outside capacitor; the function prevents overshoot at startup.

Features

- Input voltage range 3V ~ 24V
- Output voltage: Define by N-CH MOSFET
- Duty ratio: 0% ~ 85% PWM control
- Oscillation frequency: 500kHz
- Soft-start time programmed by external capacitor
- Thermal shutdown protection
- Internal current limit
- External SW N-CH MOSFET

Ordering Information


Part No.	Package	Packing
TS19375CS RLG	SOP-8	2.5Kpcs / 13" Reel

Note: "G" denotes for Halogen Free

Application

- LED Panel Display Backlighting
- PDA and Portable Media Players
- Local Boost Regulator

Typical Application Circuit

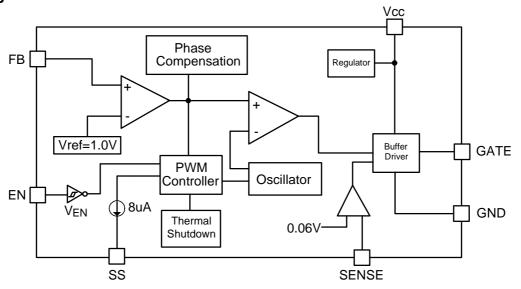
Vout = VFB x $\left(1 + \frac{R1}{R2}\right)$, VFB = 1V, R2=1k-3k C4 Capacitor ESR suggest $30 \text{m}\Omega \sim 100 \text{m}\Omega$

TS19375 PWM Step-Up Controller

Absolute Maximum Rating

Characteristics	Symbol	Rating	Unit
VCC Pin Voltage	V _{cc}	VSS - 0.3 to VSS + 26	V
Feedback Pin Voltage	V_{FB}	VSS - 0.3 to 12	V
EN Voltage	V _{EN}	VSS - 0.3 to VCC	V
SENSE Voltage	V_{SENSE}	VSS - 0.3 to VCC	V
SS Pin Voltage	V_{SS}	VSS - 0.3 to VCC	V
Gate Pin Voltage	V_{GATE}	VSS - 0.3 to VCC	V
Power Dissipation	P _D	Internally limited	mW
Storage Temperature Range	T _{STG}	-40 to +150	°C
Operating Junction Temperature Range	T _{OPJ}	-20 to +125	°C
Operating Supply Voltage	V _{OP}	+3 to +24	V
Thermal Resistance from Junction to case	θ_{JC}	40	°C/W
Thermal Resistance from Junction to ambient	θ_{JA}	120	°C/W

Note: Stresses exceed those rating may damage the device


Electrical Specifications (T_A=25°C, V_{IN}=5V, V_{OUT}=12V unless otherwise noted)

Characteristics	Symbol	Conditions	Min	Тур	Max	Units
Feedback Voltage	V_{FB}	I _{OUT} =0.1A	0.975	1.000	1.025	V
Quiescent Current	I _{CCQ}	V _{FB} =1.5V force driver off	-	4	6	mA
Feedback Bias Current	I _{FB}	I _{OUT} =0.1A	-	0.1	0.5	uA
Shutdown Supply Current	I _{SD}	V _{EN} =0V	-	1	10	uA
Oscillation Frequency	Fosc	SW pin	400	500	600	KHz
Sense Voltage	V _{SENSE}		0.05	0.06	0.07	V
Soft Start Current	I _{SS}	V _{SS} =0V	-	8	-	uA
EN Pin Logic input threshold voltage	V _{SH}	High (regulator ON)	2.0	-	-	V
	V _{SL}	Low (regulator OFF)	-	-	0.8	
END: 1	I _{SH}	V _{EN} =2.5V (ON)	-	20	-	uA
EN Pin Input Current	I _{SL}	V _{EN} =0.3V (OFF)	-	-1	-	uA
LX Rise Time	T_LXR	C _{LX} =1000pF	-	60	-	~ C
LX Fall Time	T _{LXF}	C _{LX} =1000pF	-	60	-	nS
Efficiency	EFFI	$V_{CC} = 5V,$ $V_{OUT} = 12V$ $I_{OUT} = 1A$	-	91	-	%
Maximum Duty Cycle	DC _{MAX}	V _{FB} =0V	-	85	-	%
Minimum Duty Cycle	DC _{MIN}	V _{FB} =1.5V	-	0	-	70
Thermal shutdown Temp	TSD		-	145	-	C.

Block Diagram

Pin Function Description

Pin NO.	Pin Name	Pin Description		
		Shutdown Control Input		
1	EN	H: Normal Operation		
		L: Shutdown Mode		
2	V_{CC}	VCC Supply pin		
3	FB	Feedback Pin		
4	SS	Soft-Start pin		
5	V _{SENSE}	Current Limit Sense Voltage		
6	Gate	Gate drive for external N-CH MOSFET		
7	GND	Signal Ground Pin		
8	NC	Non Connect		

Function Description

PWM Control

The TS19375 is high efficient PWM step-up controller, the pulse width varies in a range from 0 to 85%. According to the load current, the ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, TS19375 provide a low-ripple power over broad ranges of input voltage and load current.

Setting the Output Voltage

Application circuit shows the basic application circuit with adjustable output version. The external resistor sets the output voltage according to the following formula:

Vout = VFB x
$$\left(1 + \frac{R1}{R2}\right)$$

Table 1: Resistor select for output voltage setting

V _{out}	R2	R1
12V	1K	11K
15V	1.5K	21K
18V	1K	17K
24V	1.3K	30K

Current Limit Setting

The current limit threshold is setting by the external resistor (R_{SENSE}) connecting from SENSE pin to GND (refer the application circuit). The internal current limit compared voltage is 60mV. When the SENSE voltage is larger than 60mV, an over-current condition is triggered. Please refer to the formula for setting the minimum current limit value:

$$ISW(MAX) = \frac{60mV}{RSENSE}$$

Note: I_{SW(MAX)} is the maximum N-MOSFET current

Inductor Selection

For most designs, Low inductance values are physically smaller but require faster switching, which results in some efficiency loss. The inductor value can be derived from the following formula:

$$L = \frac{VIN \times (VOUT - VIN)}{VOUT \times \Delta L \times FLX}$$

Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 15% of the maximum input current 3A, Δ IL=0.45A.

Table 2: Inductor select for output voltage setting (V_{CC}=5V)

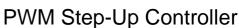
V _{out}	9V	12V	15V	18V
L1 Value	18uH	15uH	10uH	10uH

The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation (3A+0.25A).

TS19375 PWM Step-Up Controller

Function Description (Continue)

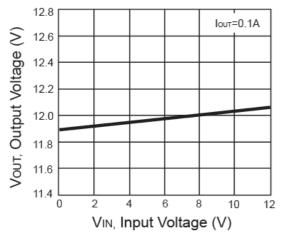
Input Capacitor Selection

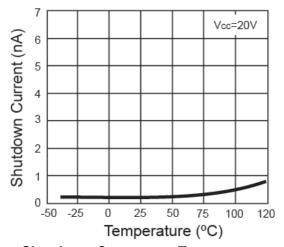

The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used.

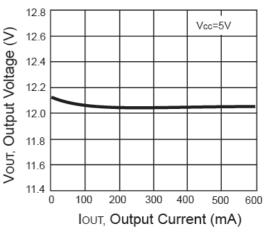
The capacitor voltage rating should be at least 1.5 times greater than the input voltage, and often much higher voltage ratings are needed to satisfy.

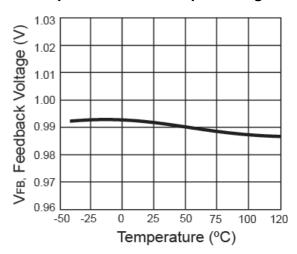
Output Capacitor Selection

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. A low ESR capacitor sized for maximum RMS current must be used. The low ESR requirements needed for low output ripple voltage. The capacitor voltage rating should be at least 1.5 times greater than the input voltage, and often much higher voltage ratings are needed to satisfy.


The ESR range of output capacitor is $30m\sim100m\Omega$ at switch current more than 1.5A. Add a 4.7uF output bypass capacitor in order to reduce output ripple effectively



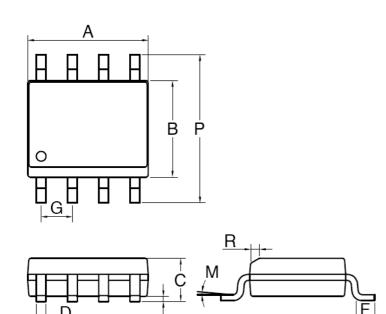

Electrical Characteristics Curve (T_A=25°C, V_{IN}=5V, V_{FORWARD-LED}=3.3V, unless otherwise noted)


Input Voltage vs. Output Voltage

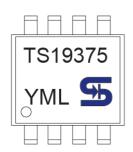
Shutdown Current vs. Temperature

Output Current vs. Output Voltage

Feedback Voltage vs. Temperature


Version: B11

6/8



SOP-8 Mechanical Drawing

SOP-8 DIMENSION					
DIM	MILLIM	ETERS	INCHES		
DIIVI	MIN	MAX	MIN	MAX.	
Α	4.80	5.00	0.189	0.196	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27BSC		0.05BSC		
K	0.10	0.25	0.004	0.009	
M	00	7°	00	7º	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Marking Diagram

Y = Year Code

M = Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

7/8

L = Lot Code

Version: B11

TS19375 PWM Step-Up Controller

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.