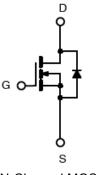


SOT-223 Pin Definition: 1. Gate 2. Drain 3. Source

V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)
600	5 @ V _{GS} =10V	0.6

General Description

The TSM2N60S is used an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition, this advanced MOSFET is designed to withstand high energy in avalanche and commutation modes. The new energy efficient design also offers a drain- to-source diode with a fast recovery time. Designed for high voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional and safety margin against unexpected voltage transients.


Features

- Robust high voltage termination
- Avalanche energy specified
- Diode is characterized for use in bridge circuits
- Source to Drain diode recovery time comparable to a discrete fast recovery diode.

Ordering Information

Part No.	Package	Packing
TSM2N60SCW RP	SOT-223	2.5Kpcs / 13" Reel

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	600	V	
Gate-Source Voltage	V _{GS}	±30	V	
Continuous Drain Current	I _D	0.6	А	
Pulsed Drain Current	I _{DM}	1.5	А	
Continuous Source Current (Diode Conduction)	I _S	1	А	
Drain Source Voltage Slope (V_{DS} = 480V, I_D =0.8A, T_J = 125°C)	dv/dt	50	V/ns	
Total Maximum Power Dissipation @Ta = 25°C	P _{DTOT}	2.5	W	
Operating Junction Temperature	TJ	+150	°C	
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C	

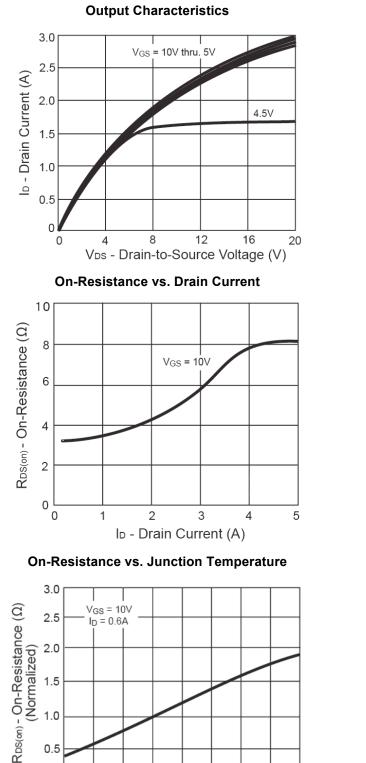
Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Case	R _e Jc	15	°C/W
Thermal Resistance - Junction to Ambient	RƏ _{JA}	55.8	°C/W

Notes: Surface mounted on FR4 board t \leq 10sec

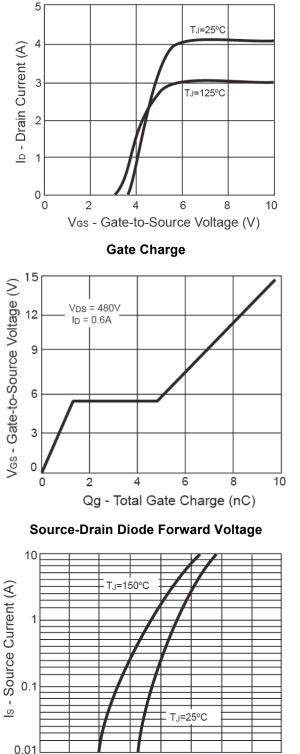
Electrical Specifications (Ta = 25°C unless otherwise noted)

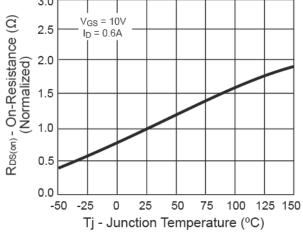
Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Static					•	
Drain-Source Breakdown Voltage	V_{GS} =0V, I _D =250uA	BV _{DSS}	600			V
Drain-Source On-State Resistance	V _{GS} =10V, I _D =0.6A	R _{DS(ON)}		3.6	5	Ω
Gate Threshold Voltage	V_{DS} = V_{GS} , I_D =250uA	V _{GS(TH)}	2		4	V
Zero Gate Voltage Drain Current	V _{DS} =600V, V _{GS} =0V	I _{DSS}			1	uA
Gate Body Leakage	V_{GS} =±30V, V_{DS} =0V	I _{GSS}			±100	nA
Forward Transconductance	V _{DS} =10V, I _D =0.2A	g _{fs}		0.8		S
Diode Forward Voltage	I _S =0.6A, V _{GS} =0V	V _{SD}		0.85	1.15	V
Dynamic ^b						
Total Gate Charge	- V _{DS} =400V, I _D =0.6A, V _{GS} = 10V	Qg		13		
Gate-Source Charge		Q _{gs}		2		nC
Gate-Drain Charge		Q_gd		6		
Input Capacitance		C _{iss}		435		
Output Capacitance	− V _{DS} =25V, V _{GS} =0V, − f =1.0MHz	C _{oss}		56		pF
Reverse Transfer Capacitance		C _{rss}		9.2		
Switching ^c						
Turn-On Delay Time		t _{d(on)}		12		
Turn-On Rise Time	V_{GS} =10V, I _D =0.6A, V _{DD} =300V, R _G =18Ω	t _r		21		
Turn-Off Delay Time		t _{d(off)}		30		nS
Turn-Off Fall Time		t _f		24		


Notes:

a. Pulse test: pulse width <=300uS, duty cycle <=2%

b. For design reference only, not subject to production testing.


c. Switching time is essentially independent of operating temperature.



Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

Transfer Characteristics

1.6

0

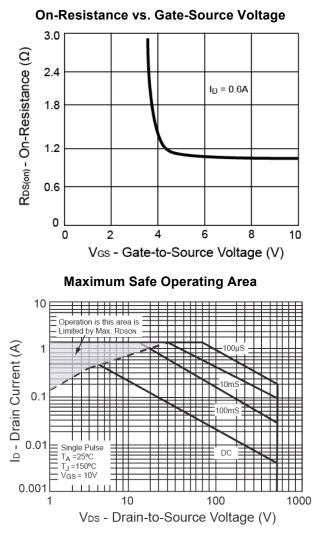
0.2

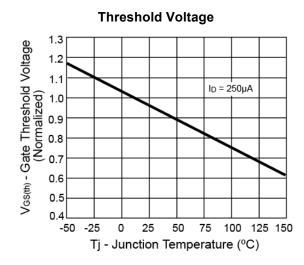
0.4

0.6

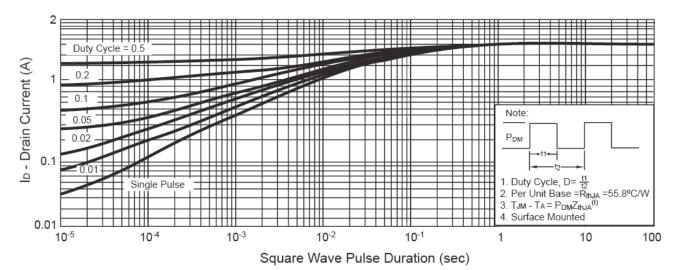
0.8

Vsp - Source-to-Drain Voltage (V)

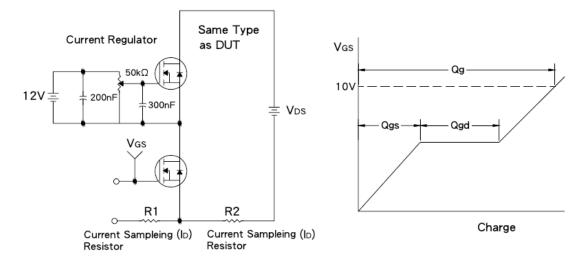

1.0

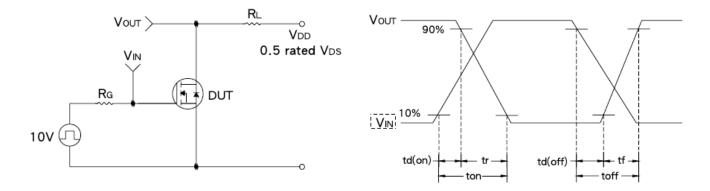

1.2

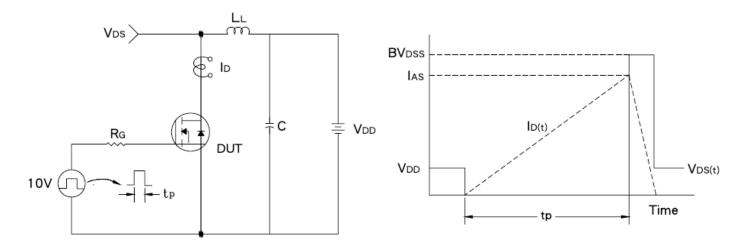
1.4



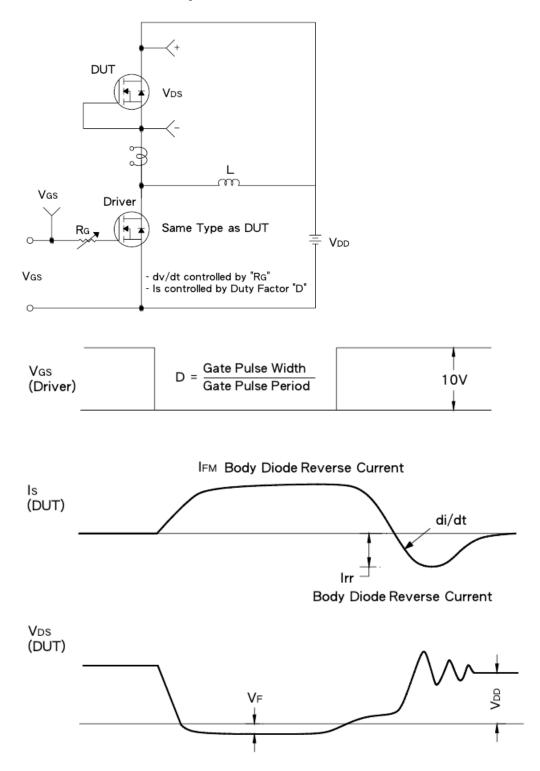
Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)


Normalized Thermal Transient Impedance, Junction-to-Ambient

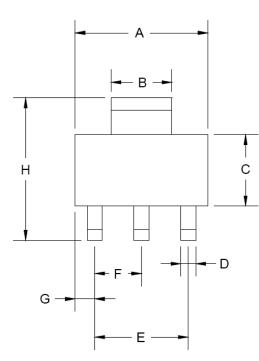

Version: A09

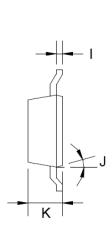

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform



EAS Test Circuit & Waveform




Diode Reverse Recovery Time Test Circuit & Waveform


SOT-223 Mechanical Drawing

	SOT-223 DIMENSION					
DIM	MILLIMETERS		INCHES			
DIN	MIN	MAX	MIN	MAX		
Α	6.350	6.850	0.250	0.270		
В	2.900	3.100	0.114	0.122		
С	3.450	3.750	0.136	0.148		
D	0.595	0.635	0.023	0.025		
Е	4.550	4.650	0.179	0.183		
F	2.250	2.350	0.088	0.093		
G	0.835	1.035	0.032	0.041		
Н	6.700	7.300	0.263	0.287		
I	0.250	0.355	0.010	0.014		
J	10°	16°	10°	16°		
К	1.550	1.800	0.061	0.071		

Marking Diagram

- Y = Year Code
- M = Month Code
 - (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)
 - = Lot Code

L

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.