Table 1: Main Features

Symbol	Value	Unit
$\mathbf{I}_{\mathbf{T}(\text { RMS })}$	10	A
$\mathbf{V}_{\text {DRM }} / \mathbf{V}_{\text {RRM }}$	400,600 and 800	V
$\mathbf{I}_{\mathbf{G T}}$	15	mA

DESCRIPTION

The TYNx10 Silicon Controlled Rectifiers is a high performance glass passivated technology.

This general purpose Silicon Controlled Rectifiers is designed for power supply up to 400 Hz on resistive or inductive load.

Table 2: Order Codes

Part Numbers	Marking
TYN410RG	TYN410
TYN610RG	TYN610
TYN810RG	TYN810

Table 3: Absolute Ratings (limiting values)

Symbol	Parameter			Value	Unit
$\mathrm{I}_{\text {T(RMS) }}$	RMS on-state current (180° conduction angle)		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	10	A
$\mathrm{IT}_{\text {(} \mathrm{AV})}$	Average on-state current (180° conduction angle)		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	6.4	A
${ }^{\text {ITSM }}$	Non repetitive surge peak on-state current	$\mathrm{t}_{\mathrm{p}}=8.3 \mathrm{~ms}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	105	A
		$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$		100	
$1^{2} t$	I^{2} t Value for fusing	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	50	$A^{2} \mathrm{~s}$
di/dt	Critical rate of rise of on-state current $\mathrm{I}_{\mathrm{G}}=100 \mathrm{~mA}, \mathrm{dl}_{\mathrm{G}} / \mathrm{dt}=0.1 \mathrm{~A} / \mathrm{ss}$		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	50	A/ $\mu \mathrm{s}$
I_{GM}	Peak gate current	$\mathrm{t}_{\mathrm{p}}=20 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	4	A
$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$	Average gate power dissipation		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	1	W
P_{GM}	Maximum gate power	$\mathrm{t}_{\mathrm{p}}=20 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	10	W
$V_{\text {DRM }}$ $V_{\text {RRM }}$	Repetitive peak off-state voltage	TYN410	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	400	V
		TYN610		600	
		TYN810		800	
$\begin{gathered} \mathrm{T}_{\text {stg }} \\ \mathrm{T}_{\mathrm{j}} \end{gathered}$	Storage junction temperature range Operating junction temperature range			$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum lead temperature for soldering during 10 s at 2 mm from case			260	${ }^{\circ} \mathrm{C}$

Tables 4: Electrical Characteristics ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Test Conditions			Value	Unit
$\mathrm{I}_{\text {GT }}$	$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}$ (D.C.) $\mathrm{R}_{\mathrm{L}}=33 \Omega$		MAX.	15	mA
V_{GT}			MAX.	1.5	V
V_{GD}	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }} \quad \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega$	$\mathrm{T}_{\mathrm{j}}=110^{\circ} \mathrm{C}$	MIN.	0.2	V
t_{gt}	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }} \quad \mathrm{I}_{\mathrm{G}}=40 \mathrm{~mA} \mathrm{di} / \mathrm{dtt}=0.5 \mathrm{~A} / \mu \mathrm{s}$		TYP.	2	$\mu \mathrm{s}$
I_{H}	$\mathrm{I}_{\mathrm{T}}=100 \mathrm{~mA}$ Gate open		MAX.	30	mA
I_{L}	$\mathrm{I}_{\mathrm{G}}=1.2 \times \mathrm{I}_{\mathrm{GT}}$		TYP.	50	mA
dV/dt	Linear slope up to: $\mathrm{V}_{\mathrm{D}}=67 \% \mathrm{~V}_{\text {DRM }}$ Gate open	$\mathrm{T}_{\mathrm{j}}=110^{\circ} \mathrm{C}$	MIN.	200	V/us
$\mathrm{V}_{\text {TM }}$	$\mathrm{I}_{\mathrm{T}}=20 \mathrm{~A} \quad \mathrm{tp}=380 \mu \mathrm{~s}$		MAX.	1.6	V
${ }^{\text {I DRM }}$ $I_{\text {RRM }}$	$\mathrm{V}_{\text {DRM }}=\mathrm{V}_{\text {RRM }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	MAX.	10	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=110^{\circ} \mathrm{C}$		2	mA
t_{a}	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{D}}=67 \% \mathrm{~V}_{\mathrm{DRM}} & \mathrm{I}_{\mathrm{TM}}=20 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{R}}=25 \mathrm{~V} \\ \mathrm{~d} \mathrm{l}_{\mathrm{TM}} / \mathrm{dt}=30 \mathrm{~A} / \mu \mathrm{s} & \mathrm{~d} \mathrm{~V}_{\mathrm{D}} / \mathrm{dt}=50 \mathrm{~V} / \mu \mathrm{s} \end{array}$	$\mathrm{T}_{\mathrm{j}}=110^{\circ} \mathrm{C}$	TYP.	70	$\mu \mathrm{s}$

Table 5: Thermal Resistance

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	Junction to case (D.C.)	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}(\mathrm{j}(\mathrm{a})}$	Junction to ambient	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Figure 1: Maximum average power dissipation versus average on-state current

Figure 2: Correlation between maximum average power dissipation and maximum allowable temperature ($\mathrm{T}_{\mathrm{amb}}$ and $\mathrm{T}_{\text {lead }}$)

Figure 3: Average on-state current versus case temperature

Figure 5: Relative variation of gate trigger current versus junction temperature

Figure 7: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < $\mathbf{1 0} \mathbf{~ m s}$, and corresponding values of $\mathrm{I}^{2} \mathrm{t}$

Figure 4: Relative variation of thermal impedance versus pulse duration

Figure 6: Surge peak on-state current versus number of cycles

Figure 8: On-state characteristics (maximum values)

Figure 9: Ordering Information Scheme

Table 6: Product Selector

Part Numbers	Voltage (xxx)			Sensitivity	Package
	$\mathbf{4 0 0} \mathbf{V}$	$\mathbf{6 0 0} \mathbf{V}$	$\mathbf{8 0 0 V}$		
TYN410RG	X			15 mA	TO-220AB
TYN610RG		X			
TYN810RG			X		

Figure 10: TO-220AB Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Table 7: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
TYN410RG	TYN410				Tube
TYN610RG	TYN610	220 AB	2.3 g	50	
TYN810RG	TYN810				

Table 8: Revision History

Date	Revision	Description of Changes
Sep-2001	1 A	First issue.
$13-$ Feb-2006	2	TO-220AB delivery mode changed from bulk to tube. ECOPACK statement added.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

