ESD Protection Diodes

In Ultra Small SOT-723 Package

The μESD Series is designed to protect voltage sensitive components from ESD. Excellent clamping capability, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its small size, it is suited for use in cellular phones, portable devices, digital cameras, power supplies and many other portable applications.

Specification Features:

• Small Body Outline Dimensions:

0.047" x 0.032" (1.20 mm x 0.80 mm)

Low Body Height: 0.020" (0.5 mm)
Stand-off Voltage: 3.3 V - 6.0 V

• Low Leakage

• Response Time is Typically < 1 ns

• ESD Rating of Class 3 (> 16 kV) per Human Body Model

• IEC61000–4–2 Level 4 ESD Protection

• IEC61000-4-4 Level 4 EFT Protection

• These are Pb–Free Devices

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

Epoxy Meets UL 94 V-0

LEAD FINISH: 100% Matte Sn (Tin)

MOUNTING POSITION: Any

QUALIFIED MAX REFLOW TEMPERATURE: 260°C

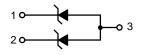
Device Meets MSL 1 Requirements

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000–4–2 (ESD) Air Contact		±30 ±30	kV
IEC 61000-4-4 (EFT)		40	Α
ESD Voltage Per Human Body Model Per Machine Model		16 400	kV V
Total Power Dissipation on FR-5 Board (Note 1) @ T _A = 25°C Derate above 25°C Thermal Resistance Junction-to-Ambient	P _D	240 1.9 525	mW mW/°C °C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.



ON Semiconductor®

http://onsemi.com

PIN 1. CATHODE 2. CATHODE

CATHOD
 ANODE

SOT-723 CASE 631AA STYLE 4

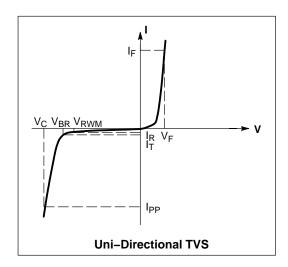
MARKING DIAGRAM

xx = Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]	
μESDxxDT5G	SOT-723	8000/Tape & Reel	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

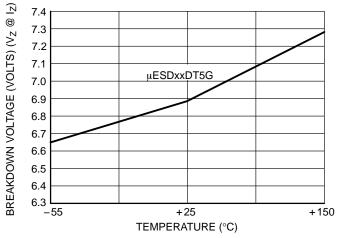

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the table on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

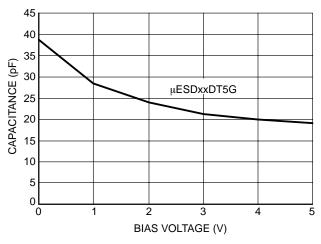
Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V_{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V_{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
l _F	Forward Current
V_{F}	Forward Voltage @ I _F
P _{pk}	Peak Power Dissipation
С	Max. Capacitance @V _R = 0 and f = 1 MHz


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 0.9 \text{ V Max.}$ @ $I_F = 10 \text{ mA}$ for all types)

	Device	V _{RWM} (V)	I _R (μΑ) @ V _{RWM}	V _{BR} (V) @ I _T (Note 2)	Ι _Τ	C (pF)
Device*	Marking	Max	Max	Min	mA	Тур
μESD3.3DT5G	L0	3.3	1.0	5.0	1.0	47
μESD5.0DT5G	L2	5.0	0.1	6.2	1.0	38
μESD6.0DT5G	L3	6.0	0.1	7.0	1.0	34

^{*}Other voltages available upon request.

^{2.} V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C.


TYPICAL CHARACTERISTICS

20 18 16 14 12 I_R (nA) 10 8 6 μESDxxDT5G 4 2 0 -55 +25 +150 TEMPERATURE (°C)

Figure 1. Typical Breakdown Voltage versus Temperature

Figure 2. Typical Leakage Current versus Temperature

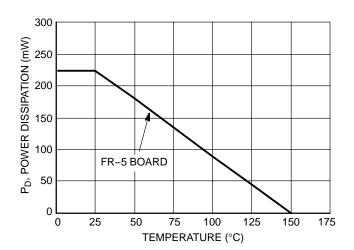
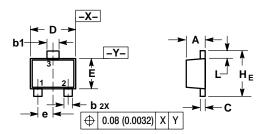
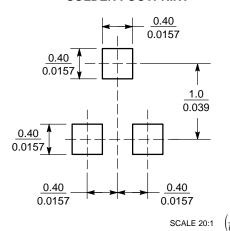



Figure 3. Typical Capacitance versus Bias Voltage

Figure 4. Steady State Power Derating Curve

PACKAGE DIMENSIONS

SOT-723 CASE 631AA-01 ISSUE A


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MII	LIMETE	RS	INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.45	0.50	0.55	0.018	0.020	0.022
b	0.15	0.20	0.27	0.0059	0.0079	0.0106
b1	0.25	0.3	0.35	0.010	0.012	0.014
С	0.07	0.12	0.17	0.0028	0.0047	0.0067
D	1.15	1.20	1.25	0.045	0.047	0.049
E	0.75	0.80	0.85	0.03	0.032	0.034
е	0.40 BSC			C	.016 BS	С
ΗE	1.15	1.20	1.25	0.045	0.047	0.049
L	0.15	0.20	0.25	0.0059	0.0079	0.0098

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE

SOLDER FOOTPRINT*

SOT-723

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative