REFERENCE FREQUENCY 27.456 MHz, 2ndIF FREQUENCY 132 kHz RF/IF FREQUENCY DOWN-CONVERTER + PLL FREQUENCY SYNTHESIZER IC FOR GPS RECEIVER

DESCRIPTION

The $\mu \mathrm{PB} 1008 \mathrm{~K}$ is a silicon monolithic integrated circuit for GPS receiver. This IC is designed as double conversion RF block integrated Pre-Amplifier + RF/IF down-converter + PLL frequency synthesizer on 1 chip.

This IC has IQ recovery function, builds a 2-bit A/D converter in both I channels and Q channels, respectively, and carries them in 36-pin plastic QFN package.

This IC is manufactured using our $30 \mathrm{GHz} \mathrm{f}_{\text {max }}$ UHSO (Ultra High $\underline{\text { Speed Process) silicon bipolar process. }}$

FEATURES

- Double conversion
$: f_{\text {REFFin }}=27.456 \mathrm{MHz}, \mathrm{f}_{\text {stIIFin }}=175.164 \mathrm{MHz}$, f2ndIFin $=132 \mathrm{kHz}$
- Integrated RF block
- Needless to input counter data
- VCO side division
- Reference division
- Supply voltage
- Low current consumption
- Gain adjustable externally
- Power-save function
: Pre-Amplifier + RF/IF frequency down-converter + PLL frequency synthesizer
: The 2-bit A/D converter is unified to single chip.
: fixed division internal prescaler
$: \div 102(\div 8, \div 12.75$ serial prescaler)
: -2
: $\mathrm{Vcc}=2.7$ to 3.3 V
: $\mathrm{Icc}=18.0 \mathrm{~mA}$ TYP. @ Vcc=3.0 V
: Gain control voltage pin (control voltage up vs. gain down)
: Power-save dark current Icc(PD) = $10 \mu \mathrm{~A}$ MAX.
- High-density surface mountable

APPLICATIONS

- Consumer use GPS receiver of reference frequency 27.456 MHz , 2nd IF frequency 132 kHz (for general use)

ORDERING INFORMATION

Part Number	Package	Supplying Form
μ PB1008K-E1	36-pin plastic QFN	• 12 mm wide embossed taping \bullet Pin 1 indicates pull-out direction of tape \bullet Qty 2.5 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order: $\mu \mathrm{PB} 1008 \mathrm{~K}$

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

PRODUCT LINE-UP ($\mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2 5 ^ { \circ }} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$)

Type	Part Number	Functions (Frequency unit: MHz)	Vcc (V)	$\begin{aligned} & \text { Icc } \\ & (\mathrm{mA}) \end{aligned}$	$\begin{gathered} C G \\ (\mathrm{~dB}) \end{gathered}$	Package	Status
Clock Frequency Specific 1 chip IC	$\mu \mathrm{PB1008K}$	Pre-amplifier + RFdownconverter + IQ down-converter + IF amplifier + 2-bit ADC + PLL synthesizer $\text { REF }=27.456$ $1 \text { stIF }=175.164 / 2 \text { ndIF }=0.132$ On-chip 2-bit ADC	2.7 to 3.3	18.0	$\begin{gathered} 100 \text { to } \\ 120 \end{gathered}$	36-pin plastic QFN	New Device
	$\mu \mathrm{PB} 1007 \mathrm{~K}$	Pre-amplifier + RF/IF downconverter + PLL synthesizer $\begin{aligned} & \text { REF }=16.368 \\ & 1 \text { stIF }=61.380 / 2 \text { ndIF }=4.092 \end{aligned}$	2.7 to 3.3	25.0	$\begin{gathered} 100 \text { to } \\ 120 \end{gathered}$	36-pin plastic QFN	Available
	$\mu \mathrm{PB} 1005 \mathrm{~K}$	$\begin{aligned} & \mathrm{REF}=16.368 \\ & 1 \mathrm{stIF}=61.380 / 2 \mathrm{ndIF}=4.092 \end{aligned}$				36-pin plastic QFN	Available

Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
To know the associated products, please refer to their latest data sheets.

SYSTEM APPLICATION EXAMPLE

GPS receiver RF block diagram

Basic frequency in a figure is set to $\mathrm{f}_{0}=1.023 \mathrm{MHz}$.

Caution This diagram schematically shows only the μ PB1008K's internal functions on the system. This diagram does not present the actual application circuits.

PIN CONNECTION AND INTERNAL BLOCK DIAGRAM

PIN EXPLANATION

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function and Application	Internal Equivalent Circuit
1	GND LNA	Ground pin of LNA.	
2	LNAin	Input pin of low noise amplifier. It is a single-ended open collector design. Capacitive coupling is required; external matching will improve gain or NF.	
3	Vccit	Supply voltage pin of LNA, RF mixer and VCO voltage regulator.	
4	GNDıo	Ground pin of 1stLO oscillator circuit and RF Mixer.	
5	1stLO-OSC1	Pin 5 \& 6 are base pins of the differential amplifier for 1stLO oscillator. These pins requre an LC (varacator) tank circuit to oscilate at around 1400 MHz .	
7	Vcclo	Supply voltage pin of oscillator circuit for 1stLO oscillator and RF mixer.	
8	PDout	This is a cirrent mode charge pump output. For connection to a passive RC loop filter for driving external varactor diode of 1stLO oscillator.	
9	Vccaig	Supply voltage pin of digital portion of the chip.	

\begin{tabular}{|c|c|c|c|}
\hline Pin \& Pin Name \& Function and Application \& Internal Equivalent Circuit \\
\hline \begin{tabular}{|c|}
10 \\
\\
\\
\hline 11
\end{tabular} \& REFin

GNDdig \& | Input pin of reference frequency buffer. This pin should be equipped with external 27 MHz oscillator (e.g. TCXO). |
| :--- |
| Ground pin of digital portion of the chip. | \&

\hline 12 \& IQ cntl \& The voltage on this pin controls the Q channel IF amplifier gain control of $\pm 2 \mathrm{~dB}$ can be achieved for 0 to 3 V . Leave open-circuited if not used. \&

\hline 13 \& PD1 \& Standby mode control. Low = whole chip OFF \& High = Whole chip ON. \&

\hline
\end{tabular}

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function and Application	Internal Equivalent Circuit
14 15	2ndlFout-Q	Differential output pins of quadrature demodulator Q output. Adding a lowpass shunt capacitor between these pins will define the IF bandwidth.	(28)
16 17 17	DCoffsetQ	DC offset compensation pin for C arm. A low pass capacitor shunt to pin 17 is required. DC offset compensation pin for Q-bar arm. A low pass capacitor shunt to pin 16 is required.	(28)
18	GNDbb	Ground pin of CMOS output driver.	(23)
19	Qmag	Digitizd Q signal. Magnitude bit of 2-bit ADC output.	
20	Qsign	Digitizd Q signal. Sign bit of 2bit ADC output.	
21	Isign	Digitizd I signal. Magnitude bit of 2-bit ADC output.	
22	Imag	Digitizd I signal. Magnitude bit of 2-bit ADC output.	
23	$\mathrm{V}_{\text {ccbb }}$	Supply voltage pin of CMOS output driver.	

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function and Application	Internal Equivalent Circuit
24	DCoffsetlb	DC offset compensation pin for I-bar arm. A low pass capacitor shunt to pin 25 is required.	See pin 16 \& 17 schematic
25	DCoffsetl	DC offset compensation pin for I-bar arm. A low pass capacitor shunt to pin 24 is required.	
26	2ndIFout-Ib	Differential output pins of quadrature demodulator I output. Adding a lowpass shunt capacitor between these pins will define the IF bandwidth.	See pin 14 \& 15 schematic
27	2ndIFout-I		
28	Vccanalog	Supply voltage pin of analog portion of the chip.	(28)
29	$V_{\text {Agc }}$	Gain control voltage pin of IF amplifier. This voltage performs reverse control, (i.e., VAGC up \rightarrow gain down). If this pin is left open, then it is default at maximum gain.	
30	IF-in1	Differential input pins of 1stlF AGC amplifier.	(28)
31	IF-in2		
32	GNDanalog	Ground pin of analog portion of the chip.	

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	3.6	V
Total Circuit Current	IccTotal	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	100	mA
Power Dissipation	PD_{D}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Note	361
Operating Ambient Temperature	T_{A}		mW	
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-40 to +85	${ }^{\circ} \mathrm{C}$

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.7	3.0	3.3	V
Operating Ambient Temperature	TA	-40	+25	+85	${ }^{\circ} \mathrm{C}$
RF Input Frequency	ffFFin	-	1575.42	-	MHz
1st LO Oscillating Frequency	$\mathrm{f}_{1 \text { stLLoin }}$	-	1400.256	-	MHz
1st IF Input Frequency	$\mathrm{f}_{1 \text { stIFin }}$	-	175.164	-	MHz
2nd LO Input Frequency	$\mathrm{f}_{\text {2ndLOin }}$	-	175.032	-	MHz
2nd IF Input Frequency	$\mathrm{f}_{\text {2ndIIF }}$ f2ndilFout	-	132	-	kHz
Reference Input Frequency	$\mathrm{freFin}^{\text {f }}$	-	27.456	-	MHz

POWER DOWN CONTROL (PIN 13) VOLTAGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Power Down Voltage (Low Level)	V_{IL}	0	-	0.5	V
Power Down Voltage (High Level)	V_{H}	2.0	-	V_{cc}	V

AGC CONTROL VOLTAGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
AGC Control Voltage	VAGC	0.5	-	2.5	V

ELECTRICAL CHARACTERISTICS ($\mathrm{TA}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$)
CIRCUIT CURRENT

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Total Circuit Current	IccTotal	No signal	14.0	18.0	23.5	mA
Power-save Dark Current	Icc (PD)	Pin 13 = 0 V	-	1	-	μA
Reference Block Circuit Current (Pin 3)	Icc (rf)	No signal	0.4	0.5	0.7	mA
VCO Block Circuit Current (Pin 7)	Icc (lo)	No signal	4.1	5.6	7.2	mA
PLL Block Circuit Current (Pin 9)	Icc (pII)	No signal	2.7	3.6	4.7	mA
Baseband Block Circuit Current (Pin 23)	Icc (bb)	No signal, open load	2.5	3.4	4.3	mA
IF Block Circuit Curent (Pin 28)	Icc (if)	No signal	2.7	3.7	4.7	mA
Pre-Amplifier Open Connector Current (Pin 36)	Icc (Ina)	No signal	1.0	1.4	1.8	mA

AC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
RF Block (LNA, RFmixer)$\mathrm{f}_{\mathrm{RFin}}=1575.42 \mathrm{MHz}, \mathrm{f}_{\text {stLLOin }}=1400.256 \mathrm{MHz}, \mathrm{PLo}=0 \mathrm{dBm}, \mathrm{f}_{\text {stIf }}=175.164 \mathrm{MHz}, \mathrm{P}_{\text {in } 15}=3 \mathrm{~V}, \mathrm{ZL}=\mathrm{Z}_{\text {in }}=50 \Omega$						
Power conversion gain	CGlna-mix	$P_{\text {RFin }}=-60 \mathrm{dBm}$	18	23	28	dB
Noise Figure	NFLna-mix	Input matched, DSB	-	5	-	dB
Input 1dB Compression Level	Pin (1dB) LNA-MIX	Input matched	-	-38	-	dBm
Local Signal Leak to IF	Alo-if		-	-35	-	dBm
Local Signal Leak to RF	Alo-rf		-	-50	-	dBm
IF Block (AGC, IQ Mix, IFamp, ADC)$\mathrm{f}_{1 \text { stIFin }}=175.164 \mathrm{MHz}, \mathrm{f}_{\text {2ndLOin }}=175.032 \mathrm{MHz}, \mathrm{f}_{2 \text { ndilFout }}=132 \mathrm{kHz}, \mathrm{ZL}=2 \mathrm{k} \Omega, \mathrm{Z}_{\text {in }}=600 \Omega$						
I ch Magbit Output Pluse Duty	Duty-I ch	$\begin{aligned} & \mathrm{P}_{1 \text { stlfin }}=-80 \mathrm{dBm}, \mathrm{~V}_{\mathrm{AGC}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IQ-C }}=0 \mathrm{~V} \end{aligned}$	50	70	-	\%
Q ch Magbit Output Pluse Duty	Duty-Q ch	$\begin{aligned} & \mathrm{P}_{2 \text { ndllin }}=-80 \mathrm{dBm}, \mathrm{~V}_{\mathrm{AGC}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{1 \mathrm{Q}-\mathrm{C}}=2.1 \mathrm{~V} \end{aligned}$	50	70	-	\%
Input 1dB Compression Level	Pin (1dB) AGC	AGCamp + IQ MIX	-	-45	-	dBm
AGC Control range	Aagc		25	45	-	dB
2ndLO Isoration (1stIFin)	A2ndLo-1stIF	$\mathrm{V}_{\text {AGC }}=0 \mathrm{~V}$	-	-90	-	dB
IQ Balance Control Voltage	VIQ-C	Ich $=\mathrm{Q}_{\text {ch }}$	-	2.1	2.8	V
IQ Balance Control Gain Range	AlQ-c	Magbit Output Pulse Duty Cycle 50\% (Qch)	4.0	6.5	-	dB
PLL						
PLL Charge Pump High Side Current	Ісрон	$\mathrm{V}_{\text {cPout }}=\mathrm{V}_{\mathrm{cc}} / 2$	-	200	-	$\mu \mathrm{A}$
PLL Charge Pump Low Side Current	Icpol	$\mathrm{V}_{\text {cPout }}=\mathrm{V}_{\mathrm{cc} / 2}$	-	-200	-	$\mu \mathrm{A}$
Phase Comparision Frequency	$f_{\text {PD }}$		-	13.728	-	MHz
VCO, REF Amp						
Reference Input Minimum Level	VreFin		50	200	-	mVpp
Input Frequency of Reference Input	$\mathrm{frefin}^{\text {f }}$		-	27.456	-	MHz
VCO Control Voltage	VT	PLL Locked	0.8	1.5	2.2	V
VCO C/N	C / N	$\Delta 1 \mathrm{kHz}$	57	62	-	$\mathrm{dBc} / \mathrm{Hz}$

TYPICAL CHARACTERISTICS (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathrm{C}$, $\mathrm{Vcc}=3.0 \mathrm{~V}$) — IC TOTAL —

TOTAL CIRCUIT CURRENT
vs. SUPPLY VOLTAGE

TOTAL CIRCUIT CURRENT vs. V (PS)

Remark The graphs indicate nominal characteristics.

- RF BLOCK (LNA + RF down converter) -

1stIF OUTPUT POWER
vs. RF INPUT POWER

RF CONVERSION GAIN vs. RF INPUT POWER

RF CONVERSION GAIN
vs. LO INPUT POWER

1stIF OUTPUT POWER
vs. RF INPUT POWER

RF CONVERSION GAIN
vs. RF INPUT POWER

RF CONVERSION GAIN
vs. LO INPUT POWER

Remark The graphs indicate nominal characteristics.

RF CONVERSION GAIN
vs. RF INPUT FREQUENCY

RF Input Frequency $f_{\text {RFin }}(\mathrm{MHz})$
LOCAL LEAKAGE POWER@1stIFout vs. LO INPUT POWER

NOISE FILTER vs. SUPPLY VOLTAGE

Remark The graphs indicate nominal characteristics.

- RF BLOCK (PLL/REF) -

CHARGE PUMP OUTPUT CURRENT
vs. REFERENCE FREQUENCY

OUTPUT POWER
vs. REFERENCE INPUT MINIMUM LEVEL

OUTPUT POWER

vs. REFERENCE INPUT MINIMUM LEVEL

Remark The graphs indicate nominal characteristics.

- IF BLOCK (AGCamp + IF MIX + IFamp + ADC) -

ICH

MAG DUTY vs. 1stIF INPUT POWER

P1st|Fin (MAG DUTY 50\%) vs. IQ-CTRL VOLTAGE

Q CH

MAG DUTY vs. 1 stIF INPUT POWER

P1st|Fin (MAG DUTY 50\%) vs. AGC VOLTAGE

P1stlFin (MAG DUTY 50\%) vs. IQ-CTRL VOLTAGE

Remark The graphs indicate nominal characteristics.

ICH
MAG DUTY vs. LO INPUT POWER

MAG DUTY vs. 1stIF INPUT FREQUENCY

MAG DUTY vs. 2ndIF OUTPUT FREQUENCY

Q CH

MAG DUTY vs. LO INPUT POWER

MAG DUTY vs. 1stIF INPUT FREQUENCY

MAG DUTY vs. 2ndIF OUTPUT FREQUENCY

Remark The graphs indicate nominal characteristics.

LOCAL LEAKAGE POWER vs. LO INPUT POWER

DCOFFSET VOLTAGE (16, 17 pin)
vs. SUPPLY VOLTAGE

DCOFFSET VOLTAGE (24, 25 pin)
vs. SUPPLY VOLTAGE

Remark The graphs indicate nominal characteristics.

- IF BLOCK (ADC) —

ADC OUTPUT WAVE FORM

Remark The graphs indicate nominal characteristics.

MEASUREMENT CIRCUIT

MEASUREMENT CIRCUIT 1

RF BLOCK (LNA + RF MIX) / IF BLOCK (AGCamp + IF MIX + IFamp + ADC)

MEASUREMENT CIRCUIT 2

PLL LOCK TYPE (C/N, VT)

PACKAGE DIMENSIONS

36-PIN PLASTIC QFN (UNIT: mm)

Caution The island pins located on the corners are needed to fabricate products in our plant, but do not serve any other function. Consequently the island pins should not be soldered and should remain non-connection pins.

NOTES ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent abnormal oscillation).
(3) Keep the wiring length of the ground pins as short as possible.
(4) Connect a bypass capacitor to the Vcc pin.
(5) High-frequency signal I/O pins must be coupled with the external circuit using a coupling capacitor.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of $220^{\circ} \mathrm{C}$ or higher Preheating time at 120 to $180^{\circ} \mathrm{C}$ Maximum number of reflow processes Maximum chlorine content of rosin flux (\% mass)	: $260^{\circ} \mathrm{C}$ or below : 10 seconds or less : 60 seconds or less : 120 ± 30 seconds : 3 times : 0.2\%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of $200^{\circ} \mathrm{C}$ or higher Preheating time at 120 to $150^{\circ} \mathrm{C}$ Maximum number of reflow processes Maximum chlorine content of rosin flux (\% mass)	$: 215^{\circ} \mathrm{C}$ or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2\%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (\% mass)	: $260^{\circ} \mathrm{C}$ or below : 10 seconds or less $: 120^{\circ} \mathrm{C}$ or below : 1 time : 0.2\%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (\% mass)	$: 350^{\circ} \mathrm{C}$ or below : 3 seconds or less : 0.2\%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

- The information in this document is current as of November, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

