402/384-OUTPUT TFT-LCD SOURCE DRIVER (64 GRAY SCALE)

DESCRIPTION

The μ PD16647 is a source driver for TFT-LCD 64 gray scale displays. Its logic circuit operates at 3.3 V and the driver circuit operates at 5.0 V . The input data is digital data at 6 bits $\times 3$ dots, and 260,000 colors can be displayed in 64 -value outputs γ-corrected by the internal D/A converter and 10 external power supplies. The clock frequency is 50 MHz MIN. μ PD16647 can be used in TFT-LCD panels conforming to the SVGA standards.

FEATURES

- CMOS level input
- 402/384 outputs
- 6 bits (gray scale data) x 3 dots input
-64-value output by 10 external power supplies and internal D/A converter
- Output dynamic range : Vss2 +0.1 V to V do2 -0.1 V
- High-speed data transfer: fmax $=50 \mathrm{MHz}$ MIN.(internal data transfer rate at supply voltage Vod1 of logic circuit =3.0 V)
- Level of γ-corrected power supply can be inverted
- Input data inversion function (INV)
- Precharge-less output buffer
- Logic supply voltage (VDD1) : $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
- Driver supply voltage (VDD2) : $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
- Slim TCP

ORDERING INFORMATION

Part Number	Package
μ PD16647N-xxx	TCP (TAB package $)$

Remark The TCP package is a custom-ordered item. Users are requested to consult with an NEC sales representative.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.
2. PIN CONFIGURATION (μ PD16647N-xxx)

Remark This figure does not specify the TCP package.

3. PIN DESCRIPTION

Pin Symbol	Pin Name	Description
S_{1} to $\mathrm{S}_{402 / 384}$	Driver output	Output 64 gray-scale analog voltages converted from digital signals. Osel $=\mathrm{H}$ or open: 402 outputs (S_{1} to $\mathrm{S}_{402 / 384}$) Osel $=\mathrm{L}: 384$ outputs (S_{1} to $\mathrm{S}_{192}, \mathrm{~S}_{211 / 193}$ to $\mathrm{S}_{402 / 384}$) S_{193} to S_{210} outputs are invalid in 384 outputs.
Doo to D05	Display data input	Inputs 18-bit-wide display gray scale data (6 bits) $\times 3$ dots (RGB). Dxo : LSB, Dx5 : MSB
D_{10} to D_{15}		
D_{20} to D_{25}		
R,/L	Shift direction select input	This pin inputs/outputs start pulses in cascade mode. Shift direction of shift register is as follows: R,/L $=\mathrm{H}:$ STHR input, $\mathrm{S}_{1} \rightarrow$ S402, STHL output $R, / L=L: S T H L$ input, $S_{402} \rightarrow S_{1}$, STHR output
STHR	Right shift start pulse I/O	$R, / L=H$: Inputs start pulse $R, / L=L$: Outputs start pulse
STHL	Left shift start pulse I/O	$R / L=H$: Outputs start pulse $R / L=L$: Inputs start pulse
Bcont	Bias control	This pin can be used to finely control the bias current inside the output amplifier. In cases when fine-control is necessary, connect this pin to Vod2 using a resistor of 10 to $100 \mathrm{k} \Omega$ (per IC). When this fine-control function is not required, short-circuit this pin to VDD2. Refer to 7. Bias Current Control Function/Bcont.
CLK	Shift clock input	Inputs shift clock to shift register. Display data is loaded to data register at rising edge of this pin. Start pulse output goes high at rising edge of 134th clock after start pulse has been input, and serves as start pulse to driver in next stage. 134th clock of driver in first stage serves as start pulse of driver in next stage.
STB	Latch input	Contents of data register are latched at rising edge, transferred to D/A converter, and output as analog voltage corresponding to display data. Contents of internal shift register are cleared after STB has been input. One pulse of this signal is input when μ PD16647 is started, and then device operates normally. For STB input timing, refer to 9. Switching Characteristics Waveform.
Osel	Selection of number of outputs	Selects number of outputs. This pin is internally pulled up to Vod1. Osel $=\mathrm{H}$ or open : 402 outputs (S_{1} to $\mathrm{S}_{402 / 384}$) Osel $=\mathrm{L}: 384$ outputs (S_{1} to $\mathrm{S}_{192 \text {, }} \mathrm{S}_{211 / 193}$ to $\mathrm{S}_{402 / 384}$)
V 0 to V_{9}	γ-corrected power supply	Inputs γ-corrected power from external source. $\begin{aligned} & V_{\mathrm{SS} 2} \leq \mathrm{V}_{9} \leq \mathrm{V}_{8} \leq \mathrm{V}_{7} \leq \mathrm{V}_{6} \leq \mathrm{V}_{5} \leq \mathrm{V}_{4} \leq \mathrm{V}_{3} \leq \mathrm{V}_{2} \leq \mathrm{V}_{1} \leq V_{0} \leq V_{\mathrm{DD} 2} \text { or } \\ & V_{\mathrm{SS} 2} \leq \mathrm{V}_{0} \leq \mathrm{V}_{1} \leq \mathrm{V}_{2} \leq \mathrm{V}_{3} \leq \mathrm{V}_{4} \leq \mathrm{V}_{5} \leq \mathrm{V}_{6} \leq \mathrm{V}_{7} \leq \mathrm{V}_{8} \leq \mathrm{V}_{9} \leq \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$ Maintain gray scale power supply during gray scale voltage output.
INV	Data inversion input	Input data can be inverted when display data is loaded. INV = H : Inverts and loads input data. INV = L: Does not invert input data.
VDD1	Logic circuit power supply	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
VDD2	Driver circuit power supply	$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Vss1	Logic ground	Ground
Vss2	Driver ground	Ground

Caution Be sure to turn on power in the order $V_{D D 1}$, logic input, $V_{D D 2}$, and gray scale power (V_{0} to V_{9}), and turn off power in the reverse order, to prevent the μ PD16647 from being damaged by latchup. Be sure to observe this power sequence even during a transition period.

4. RELATION BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

The 10 major points on the γ-characteristic curve of the LCD panel are arbitrarily set by external power supplies V_{0} through V_{9}. If the display data is 00 H or 3 FH , gray scale voltage V_{0} or V_{9} is output. If the display data is in the range 01 H to 3 EH , the high-order 3 bits select an external power pair $\mathrm{V}_{\mathrm{n}+1}, \mathrm{~V}_{\mathrm{n}}$. The low-order 3 bits evenly divide the range of $\mathrm{V}_{\mathrm{n}+1}$ to V_{n} into eight segments by means of D / A conversion (however, the ranges from V_{8} to V_{7} and from V_{1} to V_{0} are divided into seven segments) to output a 64 gray scale voltage.

Figure4-1. Relationship between Input Data and γ-corrected Voltage

Table 4-1. Relationship between Input Data and Output Voltage

Input Data	D×5	Dx4	Dx3	Dx2	Dx1	Dxo	Output Voltage
00H	0	0	0	0	0	0	V_{0}
01H	0	0	0	0	0	1	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 6 / 7$
02H	0	0	0	0	1	0	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 5 / 7$
03H	0	0	0	0	1	1	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 4 / 7$
04H	0	0	0	1	0	0	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 3 / 7$
05H	0	0	0	1	0	1	$V_{1}+\left(V_{0}-V_{1}\right) \times 2 / 7$
06H	0	0	0	1	1	0	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 1 / 7$
07H	0	0	0	1	1	1	V_{1}
08H	0	0	1	0	0	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 7 / 8$
09H	0	0	1	0	0	1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 6 / 8$
OAH	0	0	1	0	1	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 5 / 8$
OBH	0	0	1	0	1	1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 4 / 8$
OCH	0	0	1	1	0	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 3 / 8$
ODH	0	0	1	1	0	1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 2 / 8$
0EH	0	0	1	1	1	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1 / 8$
0FH	0	0	1	1	1	1	V_{2}
10 H	0	1	0	0	0	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 7 / 8$
11H	0	1	0	0	0	1	$V_{3}+\left(V_{2}-V_{3}\right) \times 6 / 8$
12 H	0	1	0	0	1	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 5 / 8$
13H	0	1	0	0	1	1	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 4 / 8$
14H	0	1	0	1	0	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 3 / 8$
15H	0	1	0	1	0	1	$V_{3}+\left(V_{2}-V_{3}\right) \times 2 / 8$
16H	0	1	0	1	1	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 1 / 8$
17H	0	1	0	1	1	1	V_{3}
18 H	0	1	1	0	0	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 7 / 8$
19H	0	1	1	0	0	1	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 6 / 8$
1AH	0	1	1	0	1	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 5 / 8$
1BH	0	1	1	0	1	1	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 4 / 8$
1 CH	0	1	1	1	0	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 3 / 8$
1DH	0	1	1	1	0	1	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2 / 8$
1EH	0	1	1	1	1	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 1 / 8$
1FH	0	1	1	1	1	1	V_{4}
20 H	1	0	0	0	0	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 7 / 8$
21H	1	0	0	0	0	1	$V_{5}+\left(V_{4}-V_{5}\right) \times 6 / 8$
22 H	1	0	0	0	1	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 5 / 8$
23H	1	0	0	0	1	1	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 4 / 8$
24H	1	0	0	1	0	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 3 / 8$
25H	1	0	0	1	0	1	$V_{5}+\left(V_{4}-V_{5}\right) \times 2 / 8$
26H	1	0	0	1	1	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 1 / 8$
27H	1	0	0	1	1	1	V_{5}
28H	1	0	1	0	0	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 7 / 8$
29H	1	0	1	0	0	1	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 6 / 8$
2AH	1	0	1	0	1	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 5 / 8$
2BH	1	0	1	0	1	1	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 4 / 8$
2CH	1	0	1	1	0	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 3 / 8$
2DH	1	0	1	1	0	1	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 2 / 8$
2EH	1	0	1	1	1	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 1 / 8$
2FH	1	0	1	1	1	1	V_{6}
30 H	1	1	0	0	0	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 7 / 8$
31 H	1	1	0	0	0	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 6 / 8$
32 H	1	1	0	0	1	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 5 / 8$
33H	1	1	0	0	1	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 4 / 8$
34H	1	1	0	1	0	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 3 / 8$
35H	1	1	0	1	0	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 2 / 8$
36H	1	1	0	1	1	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1 / 8$
37 H	1	1	0	1	1	1	V_{7}
38 H	1	1	1	0	0	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 6 / 7$
39H	1	1	1	0	0	1	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 5 / 7$
3AH	1	1	1	0	1	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 4 / 7$
3BH	1	1	1	0	1	1	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 3 / 7$
3CH	1	1	1	1	0	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2 / 7$
3DH	1	1	1	1	0	1	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1 / 7$
3EH	1	1	1	1	1	0	V_{8}
3FH	1	1	1	1	1	1	V9

4.1γ-Corrected Power Circuit

The reference power supply of the D/A converter consists of a ladder circuit with a total of 64 resistors, and resistance Eri between γ-corrected power pins differs depending on each pair of γ-corrected power pins. One pair of γ-corrected power pins consists of seven or eight series resistors, and resistance $\Sigma r i$ in the figure below is indicated as the sum of the seven or eight resistors. The resistance ratio between the γ-corrected power pins (Σ ri ratio) is designed to be a value relatively close to the ratio of the γ-corrected voltages V_{1} through V_{8} (gray scale voltages in 7 steps) used in an actual LCD panel. Under ideal conditions where there is no difference between the two, therefore, there is no voltage difference between the voltage of the γ-corrected power supplies and the gray scale voltages in 7 steps of the resistor ladder circuits of the μ PD16647, and no current flows into the γ-corrected power pins V_{1} through V_{8}. As a result, a voltage follower circuit is not necessary.

Figure4-2. $\boldsymbol{\gamma}$-Corrected Power Circuit

5. RELATION BETWEEN INPUT DATA AND OUTPUT VOLTAGE

Data format: 6 bits \times RGB (3 dots)
Input width : 18 bits (1 pixel data)
(1) $R, / L=H$ (right shift)

Output	S_{1}	S_{2}	S_{3}	S_{4}	\ldots	$S_{401 / 383}$	$S_{402 / 384}$
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	D_{00} to D_{05}	\ldots	D_{10} to D_{15}	D_{20} to D_{25}

(2) $R, / L=L$ (left shift)

Output	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	\ldots	$\mathrm{~S}_{401 / 383}$	$\mathrm{~S}_{402 / 384}$
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	D_{00} to D_{05}	\ldots	D_{10} to D_{15}	D_{20} to D_{25}

6. OPERATION OF OUTPUT BUFFER

The output buffer consists of an operational amplifier circuit that does not perform precharge operation. Therefore, driver output current Ivoн $1 / 2$ is the charging current to the LCD, and IvoL $1 / 2$ is the discharging current.

Figure6-1. LCD panel driving waveform of μ PD16647

7. BIAS CURRENT CONTROL FUNCTION/Bcont

It is possible to fine-control the current consumption by using the bias current control function (Bcont pin). When using this function, connect this pin to the stabilized Vod2 potential using an external resistor (RExt). When not using this function, however, short-circuit this pin to Vdd2.

Figure7-1. Bias Current Control Function/Bcont

Refer to the table below for the percentage of current regulation when using the bias current control function.

Table7-1. Current Consumption Regulation Percentage Compared to Normal Mode

RExT	Current Consumption Regulation Percentage
SHORT	100%
$10 \mathrm{k} \Omega$	95%
$20 \mathrm{k} \Omega$	91%
$40 \mathrm{k} \Omega$	85%
$80 \mathrm{k} \Omega$	79%

Remark Be aware that the above current consumption regulation percentages are not product-
characteristic guaranteed as they are based on the results of simulation.

Caution Because the low-power and bias-current control functions control the bias current in the output amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the characteristics of the output amplifier will simultaneously change. Therefore, when using these functions, be sure to sufficiently evaluate the picture quality.

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{Vss}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Ratings	Unit
Logic Supply Voltage	VDD1	-0.3 to +4.5	V
Driver Supply Voltage	V DD2	-0.3 to +6.0	V
Input Voltage	V	-0.3 to $\mathrm{V}_{\mathrm{DDL}, 2}+0.3$	V
Output Voltage	Vo	-0.3 to $\mathrm{V}_{\mathrm{DD} 1,2}+0.3$	V
Operating Ambient Temperature	T_{A}	-10 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 1 0}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=\mathbf{0} \mathrm{V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic Supply Voltage	$\mathrm{V}_{\mathrm{DD} 1}$	3.0	3.3	3.6	V
Driver Supply Voltage	$\mathrm{V}_{\mathrm{DD} 2}$	4.5	5.0	5.5	V
High-level Input Voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD} 1}$		$\mathrm{~V}_{\mathrm{DD} 1}$	V
Low-level Input Voltage	V_{IL}	0		0.3 VDD	V
γ-corrected Supply Voltage	V_{0} to V_{9}	$\mathrm{~V}_{\mathrm{SS} 2}+0.1$		$\mathrm{~V}_{\mathrm{DD} 2}-0.1$	V
Maximum Clock Frequency	fmax.	50			MHz

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD} 1^{\mathrm{V}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss}^{2}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Input Leakage Current	IIL	$\begin{aligned} & \mathrm{D}_{00}-\mathrm{D}_{05}, \mathrm{D}_{10}-\mathrm{D}_{15}, \mathrm{D}_{20}-\mathrm{D}_{25} \\ & \mathrm{R}, / \mathrm{L}, \mathrm{STB} \end{aligned}$				± 1.0	$\mu \mathrm{A}$
Pull-up Resistor	Rpu	$\mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}$		40	100	250	$k \Omega$
High-level Output Voltage	Vон	STHR(STHL), $\mathrm{lo}=-1.0 \mathrm{~mA}$		VDD1-0.5			V
Low-level Output Voltage	Vol	STHR(STHL), $\mathrm{lo}=+1.0 \mathrm{~mA}$				0.5	V
Static Current Consumption of γ-corrected Power	Ivn1	$\begin{aligned} & V_{D D 1}=3.3 \mathrm{~V}, \\ & V_{n}-V_{n+1}=0.5 \mathrm{~V}, \\ & V_{D D 2}=5.0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{0}-\mathrm{V}_{1}$	126	253	506	$\mu \mathrm{A}$
			$\mathrm{V}_{1}-\mathrm{V}_{2}$	145	291	582	$\mu \mathrm{A}$
			$\mathrm{V}_{2}-\mathrm{V}_{3}$	289	579	1158	$\mu \mathrm{A}$
			$\mathrm{V}_{3}-\mathrm{V}_{4}$	252	504	1008	$\mu \mathrm{A}$
			$\mathrm{V}_{4}-\mathrm{V}_{5}$	343	686	1372	$\mu \mathrm{A}$
			$\mathrm{V}_{5}-\mathrm{V}_{6}$	315	631	1262	$\mu \mathrm{A}$
			$\mathrm{V}_{6}-\mathrm{V}_{7}$	237	474	948	$\mu \mathrm{A}$
			$\mathrm{V}_{7}-\mathrm{V}_{8}$	158	316	632	$\mu \mathrm{A}$
			$\mathrm{V}_{8}-\mathrm{V}_{9}$	40	80	160	$\mu \mathrm{A}$
Driver Output Current	Ivoh2	$\begin{aligned} & \text { Vout }=4.4 \mathrm{~V}, \mathrm{Vx}=4.9 \mathrm{~V} \text { Note } 1 \\ & \mathrm{~V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \end{aligned}$		(-0.12)		-0.03	mA
	Ivol2	$\begin{aligned} & \text { Vout }=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=0.1 \mathrm{~V} \text { Note1 } \\ & \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \end{aligned}$		0.04		(0.16)	mA
Output Voltage Deviation	$\Delta \mathrm{V}$ 。	$\begin{aligned} & V_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \\ & \text { Vout }^{2} .5 \mathrm{~V} \text { Note1 } \end{aligned}$			± 10	± 20	mV
Output Swing Difference Deviation	$\Delta \mathrm{VP}_{\text {P-P }}$	Input data			(± 5)		mV
Output Voltage Range	Vo	Input data : 00 H to 3 FH		Vss2 +0.1		VDD2 - 0.1	V
Dynamic Logic Current Consumption	IdD1	No load, VdD2 $=3.3 \mathrm{~V}^{\text {Note2 }}$			0.5	2.5	mA
Dynamic Driver Current Consumption	IdD2	No load, VDD2 $=5.0 \mathrm{~V}^{\text {Note2 }}$			5.0	10.0	mA

Notes 1. Vx refers to the output voltage of analog output pins S_{1} to $S_{402 / 384}$.
Vout refers to the voltage applied to analog output pins S_{1} to $\mathrm{S}_{402 / 384}$.
2. The STB cycle is specified at $31 \mu \mathrm{~s}$ and fclk= 16 MHz .

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} D 2=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss} 1=\mathrm{Vss2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	tpLH1	$C \mathrm{~L}=15 \mathrm{pF}$			7	12	ns
	tpHL1				7	12	ns
Driver Output Delay Time	tpLH2	$\left\{\begin{array}{l} \mathrm{VDD} 2=5.0 \mathrm{~V} \\ 5 \mathrm{k} \Omega+36 \mathrm{pF} \end{array}\right.$	Vo: $0.1 \mathrm{~V} \rightarrow 4.9 \mathrm{~V}$		2.2	10	$\mu \mathrm{s}$
	tpLH3				2.9	12	$\mu \mathrm{s}$
	tPHL2		V : $4.9 \mathrm{~V} \rightarrow 0.1 \mathrm{~V}$		2.6	10	$\mu \mathrm{s}$
	tPHL3				3.6	12	$\mu \mathrm{s}$
Input Capacitance	Cl_{11}	STHR (STHL), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	20	pF
	Cl_{12}	V_{0} to $\mathrm{V}_{9}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			100	150	pF
	Cl_{3}	STHR (STHL), other than V_{0} to $\mathrm{V}_{9}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	15	pF

<Output Load>

Timing Requirements ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWClk		20			ns
Clock Low Period	PW ${ }_{\text {clk (L) }}$		4			ns
Clock High Period	PWCLK (H)		4			ns
Data Setup Time	tsetup1		4			ns
Data Hold Time	thold		0			ns
Start Pulse Setup Time	tsetup2		4			ns
Start Pulse Hold Time	thold2		0			ns
INV Setup Time	tsetup4		4			ns
INV Hold Time	thold4		0			ns
Start Pulse Low Period	tspL		2			CLK
Start Pulse Rise Time	tspr	384 outputs		128		CLK
		402 outputs		134		CLK
STB Setup Time	tsetup3		1			CLK
STB Pulse Width	PW stb $^{\text {st }}$		2			CLK
Data Invalid Period	tinv			1		CLK
Last Data Timing	tLDT				1	CLK
CLK-STB Time	tclk-stb	CLK $\uparrow \rightarrow$ STB \uparrow	7			ns
STB-CLK Time	tstb-clk	STB $\uparrow \rightarrow$ CLK \uparrow	7			ns

10. RECOMMENDED MOUNTING CONDITIONS

The following conditions must be met for mounting conditions of the μ PD16647.
For more details, refer to the Semiconductor Device Mounting Technology Manual(C10535E).
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions.
μ PD16647N-xxx : TCP(TAB Package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to $350{ }^{\circ} \mathrm{C}$, heating for 2 to 3 sec ; pressure 100 g (per solder)
	ACF	Temporary bonding 70 to $100{ }^{\circ} \mathrm{C} ;$ pressure 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2} ;$ time 3 to 5 (Adhesive Conductive sec. Real bonding 165 to $180^{\circ} \mathrm{C}$ pressure 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}$ time 30 to 40secs(When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite,Ltd).

Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time.

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

