4-BIT SINGLE-CHIP MICROCONTROLLER FOR INFRARED REMOTE CONTROL TRANSMISSION

DESCRIPTION

Equipped with low-voltage 1.8 V operation, a carrier generation circuit for infrared remote control transmission, a standby release function through key entry, and a programmable timer, the μ PD6604 is suitable for infrared remote control transmitters.

For the μ PD6604, we have made available the one-time PROM product μ PD66P04B for program evaluation or small-quantity production.

FEATURES

- Program memory (ROM) : 1002×10 bits
- Data memory (RAM) : 32×4 bits
- Built-in carrier generation circuit for infrared remote control
- 9-bit programmable timer : 1 channel
- Command execution time : $8 \mu \mathrm{~s}$ (when operating at fosc $=1 \mathrm{MHz}$: RC oscillation)
- Stack level : 1 level (Stack RAM is for data memory RF as well.)
- I/O pins (Kı/o) : 8 pins
- Input pins (Kı) : 4 pins
- Sense input pin (So) : 1 pin
- $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ pin (I/O) : 1 pin (When in output mode, this is the remote control transmission display pin.)
- Power supply voltage : VDD $=1.8$ to 3.6 V (when operating at fosc $=500 \mathrm{kHz}$)
$V_{D D}=2.2$ to 3.6 V (when operating at fosc $=1 \mathrm{MHz}$)
- Operating ambient temperature : $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
- Oscillator frequency : fosc $=300 \mathrm{kHz}$ to 1 MHz
- POC circuit (Mask option)

APPLICATION

Infrared remote control transmitter (for key-less entry)

Because the μ PD6604 uses an RC oscillation system clock, its accuracy and stability are lower than the models using ceramic oscillation.
In applications where the clock accuracy and stability pose a problem, use the μ PD6134 (ceramic oscillation type).

ORDERING INFORMATION

Part Number	Package
μ PD6604GS-×××	20-pin plastic SOP $(300 \mathrm{mil})$
μ PD6604GS-×××-GJG	20-pin plastic shrink SOP $(300 \mathrm{mil})$

Remark $\times x \times$ indicates ROM code suffix.

PIN CONFIGURATION (TOP VIEW)

20-pin Plastic SOP

- μ PD6604GS- $\times \times \times$

20-pin Plastic Shrink SOP

- μ PD6604GS- $x \times x-G J G$

BLOCK DIAGRAM

LIST OF FUNCTIONS

Item	μ PD6604	μ PD66P04B
ROM capacity	1002×10 bits	
	Mask ROM	One-time PROM
RAM capacity	32×4 bits	
Stack	1 level (multiplexed with RF of RAM)	
I/O pins	- Key input (Kı) $: 4$ - Key I/O (Kı/o) : 8 - Key extended input ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) : 2 - Remote control transmission display output ($\overline{\mathrm{LED})}$: 1 (multiplexed with $\mathrm{S}_{1} \mathrm{pin}$)	
Number of keys	- 32 keys - 48 keys (when extended by key extension input) - 96 keys (when extended by key extension input and diode)	
Clock frequency	RC oscillation - fosc $=300 \mathrm{kHz}$ to 1 MHz - fosc $=300$ to 500 kHz (with POC circuit)	
Instruction execution time	$8 \mu \mathrm{~s}(\mathrm{fosc}=1 \mathrm{MHz})$	
Carrier frequency	fosc, fosc/2, fosc/8, fosc/12, fosc/16, fosc/24, no carrier (high level)	
Timer	9-bit programmable timer: 1 channel	
POC circuit	Mask option	Provided
Supply voltage	- $V_{D D}=1.8$ to 3.8 V - $V_{D D}=2.2$ to 3.6 V (with POC circuit)	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 3.6 V
Operating ambient temperature	- $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ - $\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$ (with POC circuit)	
Package	- 20-pin plastic SOP (300 mil) - 20-pin plastic shrink SOP (300 mil)	

CONTENTS

1. PIN FUNCTIONS 6
1.1 List of Pin Functions 6
1.2 Input/Output Circuits of Pins 7
1.3 Dealing with Unused Pins 8
2. INTERNAL CPU FUNCTIONS 9
2.1 Program Counter (PC) 9
2.2 Stack Pointer (SP) 9
2.3 Address Stack Register (ASR (RF)) 9
2.4 Program Memory (ROM) 10
2.5 Data Memory (RAM) 10
2.6 Data Pointer (DP) 11
2.7 Accumulator (A) 11
2.8 Arithmetic and Logic Unit (ALU) 12
2.9 Flags 12
2.9.1 Status flag (F) 12
2.9.2 Carry flag (CY) 13
3. PORT REGISTERS (PX) 14
3.1 Kı/o Port (PO) 15
3.2 Kı Port/Special Ports (P1) 16
3.2.1 Kı port (P11: bits 4-7 of P1) 16
3.2.2 So port (bit 2 of P1) 16
3.2.3 $\quad \mathrm{S}_{1} / \overline{\mathrm{LED}}$ (bit 3 of P 1) 16
3.3 Control Register 0 (P3) 17
3.4 Control Register 1 (P4) 18
4. TIMER 19
4.1 Timer Configuration 19
4.2 Timer Operation 20
4.3 Carrier Output 21
4.4 Software Control of Timer Output 21
5. STANDBY FUNCTION 22
5.1 Outline of Standby Function 22
5.2 Standby Mode Setup and Release 23
5.3 Standby Mode Release Timing 24
6. RESET PIN 26
7. POC CIRCUIT (MASK OPTION) 27
7.1 Functions of POC Circuit 28
8. SYSTEM CLOCK OSCILLATOR 29
9. INSTRUCTION SET 31
9.1 Machine Language Output by Assembler 31
9.2 Circuit Symbol Description 32
9.3 Mnemonic to/from Machine Language (Assembler Output) Contrast Table 33
9.4 Accumulator Operation Instructions 37
9.5 Input/Output Instructions 40
9.6 Data Transfer Instruction 41
9.7 Branch Instructions 43
9.8 Subroutine Instructions 44
9.9 Timer Operation Instructions 45
9.10 Others 46
10. ASSEMBLER RESERVED WORDS 48
10.1 Mask Option Directives 48
10.1.1 OPTION and ENDOP directives 48
10.1.2 Mask option definition directive 48
11. ELECTRICAL SPECIFICATIONS 49
12. CHARACTERISTIC CURVE (REFERENCE VALUES) 52
13. APPLIED CIRCUIT EXAMPLE 54
14. PACKAGE DRAWINGS 55
15. RECOMMENDED SOLDERING CONDITIONS 57
APPENDIX A. DEVELOPMENT TOOLS 58
APPENDIX B. FUNCTIONAL COMPARISON BETWEEN μ PD6604 AND OTHER SUBSERIES 59
APPENDIX C. EXAMPLE OF REMOTE-CONTROL TRANSMISSION FORMAT 60

1. PIN FUNCTIONS

1.1 List of Pin Functions

Pin No.	Symbol	Function	Output Format	When Reset
$\begin{aligned} & 1 \\ & 2 \\ & 15-20 \end{aligned}$	$\mathrm{K}_{1 / 00}-\mathrm{K}_{1 / 07}$	These pins refer to the 8 -bit I/O ports. I/O switching can be made in 8-bit units. In INPUT mode, a pull-down resistor is added. In OUTPUT mode, they can be used as the key scan output of the key matrix.	CMOS push-pull ${ }^{\text {Note }} 1$	High-level output
3	So	Refers to the input port. Can also be used as the key return input of the key matrix. In INPUT mode, the availability of the pull-down resistor of the S_{0} and S_{1} ports can be specified by software in terms in 2-bit units. If INPUT mode is canceled by software, this pin is placed in OFF mode and enters the high-impedance state.	-	High-impedance (OFF mode)
4	$S_{1} / \overline{L E D}$	Refers to the I/O port. In INPUT mode (S_{1}), this pin can also be used as the key return input of the key matrix. The availability of the pull-down resistor of the S_{0} and S_{1} ports can be specified by software in 2-bit units. In OUTPUT mode ($\overline{\mathrm{LED}}$), it becomes the remote control transmission display output (active low). When the remote control carrier is output from the REM output, this pin outputs the low level from the $\overline{\text { LED }}$ output synchronously with the REM signal.	CMOS push-pull	High-level output ($\overline{\mathrm{LED}}$)
5	REM	Refers to the infrared remote control transmission output. The output is active high. Carrier frequency: fosc, fosc/8, fosc/12, high-level, fosc/2, fosc/16, fosc/24 (usable on software)	CMOS push-pull	Low-level output
6	VDD	Refers to the power supply.	-	-
7	OSCin	These pins refer to the pins for RC oscillation.	-	High-impedance (oscillation stopped)
8	OSCout			Low level (oscillation stopped)
9	GND	Refers to the ground.	-	-
10	RESET	Normally, this pin is a system reset input. By inputting a low level, the CPU can be reset. When resetting with the POC circuit (mask option) a low level is output. A pull-up resistor is incorporated.	-	-
11-14	$\mathrm{K}_{10}-\mathrm{K}_{13}$ Note 2	These pins refer to the 4-bit input ports. They can be used as the key return input of the key matrix. The use of the pull-down resistor can be specified by software in 4-bit units.	-	Input (Low-level)

Notes 1. Be careful about this because the drive capability of the low-level output side is held low.
2. In order to prevent malfunction, be sure to input a low level to more than one of pins Kıo to Kıs when reset is released (when $\overline{R E S E T}$ pin changes from low level to high level, or POC is released due to supply voltage startup).

1.2 Input/Output Circuits of Pins

The input/output circuits of the μ PD6604 pins are shown in partially simplified forms below.

Note The drive capability is held low.
(2) $\mathrm{K}_{10}-\mathrm{K}_{13}$

(3) REM

(6) $\overline{\text { RESET }}$

1.3 Dealing with Unused Pins

The following connections are recommended for unused pins.

Table 1-1. Connections for Unused Pins

Pin		Connection	
		Inside the microcontroller	Outside the microcontroller
Kı/	INPUT mode	-	Open
	OUTPUT mode	High-level output	
REM		-	
St/ $/ \overline{\text { LED }}$		OUTPUT mode (LED) setting	
So		OFF mode setting	Directly connect to GND
KI		-	
$\overline{\text { RESET }}^{\text {Note }}$		Built-in POC circuit	Open

Note If the circuit is an applied one requiring high reliability, be sure to design it in such a manner that the $\overline{\text { RESET }}$ signal is entered externally.

Caution The I/O mode and the terminal output level are recommended to be fixed by setting them repeatedly in each loop of the program.

2. INTERNAL CPU FUNCTIONS

2.1 Program Counter (PC): 10 Bits

Refers to the binary counter that holds the address information of the program memory.

Figure 2-1. Program Counter Organization

PC | PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PC0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The program counter contains the address of the instruction that should be executed next. Normally, the counter contents are automatically incremented in accordance with the instruction length (byte count) each time an instruction is executed.

However, when executing JUMP instructions (JMP, JC, JNC, JF, JNF), the program counter contains the jump destination address written in the operand.

When executing the subroutine call instruction (CALL), the call destination address written in the operand is entered in the PC after the PC contents at the time are saved in the address stack register (ASR). If the return instruction (RET) is executed after the CALL instruction is executed, the address saved in the ASR is restored to the PC.

When reset, the value of the program counter becomes " 000 H ".

2.2 Stack Pointer (SP): 1 Bit

Refers to the 1-bit register which holds the status of the address stack register.
The stack pointer contents are incremented when the call instruction (CALL) is executed; they are decremented when the return instruction (RET) is executed.

When reset, the stack pointer contents are cleared to "0".
When the stack pointer overflows (stack level 2 or more) or underflows, the CPU is hung up thus a system reset signal is generated and the PC becoming " 000 H ".

As no instruction is available to set a value directly for the stack pointer, it is not possible to operate the pointer by means of a program.

2.3 Address Stack Register (ASR (RF)): 10 Bits

The address stack register saves the return address of the program after a subroutine call instruction is executed.
The low-order 8 bits are arranged in the RF of the data memory as a dual-function RAM. The register holds the ASR value even after the RET is executed.

When reset, it holds the previous data (undefined when turning on the power).

Caution If the RF is accessed as the data memory, the high-order 2 bits of the ASR become undefined.

Figure 2-2. Address Stack Register Organization

2.4 Program Memory (ROM): 1002 Steps $\times 10$ Bits

The ROM consists of 10 bits per step, and is addressed by the program counter.
The program memory stores programs and table data, etc.
The 22 steps from 3EAH to 3FFH cannot be used in the test program area.

Figure 2-3. Program Memory Map

Note The test program area is so designed that a program or data placed in either of them by mistake is returned to the 000 H address.

2.5 Data Memory (RAM): 32×4 Bits

The data memory, which is a static RAM consisting of 32×4 bits, is used to retain processed data. The data memory is sometimes processed in 8-bit units. R0 can be used as the ROM data pointer.

RF is also used as the ASR.
When reset, R0 is cleared to " 00 H " and R1 to RF retain the previous data (undefined when turning on the power).

Figure 2-4. Data Memory Organization

2.6 Data Pointer (DP): 10 Bits

The ROM data table can be referenced by setting the ROM address in the data pointer to call the ROM contents. The low-order 8 bits of the ROM address are specified by R0 of the data memory; and the high-order 2 bits by bits 4 and 5 of the P3 register (CR0).

When reset, the pointer contents become "000H".

Figure 2-5. Data Pointer Organization

2.7 Accumulator (A): 4 Bits

The accumulator, which refers to a register consisting of 4 bits, plays a leading role in performing various operations.

When reset, the accumulator contents are left undefined.

Figure 2-6. Accumulator Organization

A_{3}	A_{2}	A_{1}	A_{0}
A			

2.8 Arithmetic and Logic Unit (ALU): 4 Bits

The arithmetic and logic unit (ALU), which refers to an arithmetic circuit consisting of 4 bits, executes simple manipulations with priority given to logical operations.

2.9 Flags

2.9.1 Status flag (F)

Pin and timer statuses can be checked by executing the STTS instruction to check the status flag.
The status flag is set (to 1) in the following cases.

- If the condition specified with the operand is met when the STTS instruction has been executed
- When STANDBY mode is canceled.
- When the cancelation condition is met at the point of executing the HALT instruction. (In this case, the system is not placed in STANDBY mode.)

Conversely, the status flag is cleared (to 0) in the following cases:

- If the condition specified with the operand is not met when the STTS instruction has been executed.
- When the status flag has been set (to 1), the HALT instruction executed, but the cancelation condition is not met at the point of executing the HALT instruction. (In this case, the system is not placed in STANDBY mode.)

Table 2-1. Conditions for Status Flag (F) to be Set by STTS Instruction

Operand Value of STTS Instruction				Condition for Status Flag (F) to be Set
b_{3}	b_{2}	b_{1}	bo	
0	0	0	0	High level is input to at least one of K p pins.
	0	1	1	High level is input to at least one of Kı pins.
	1	1	0	High level is input to at least one of $\mathrm{K}_{\text {I }}$ pins.
	1	0	1	The down counter of the timer is 0 .
1	Either of the combinations of b_{2}, b_{1}, and b_{0} above.			[The following condition is added in addition to the above.] High level is input to at least one of S_{0} and S_{1} pins.

2.9.2 Carry flag (CY)

The carry flag is set (to 1) in the following cases:

- If the ANL instruction or the XRL instruction is executed when bit 3 of the accumulator is " 1 " and bit 3 of the operand is " 1 ".
- If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is " 1 ".
- If the INC instruction or the SCAF instruction is executed when the value of the accumulator is 0FH.

The carry flag is cleared (to 0) in the following cases:

- If the ANL instruction or the XRL instruction is executed when at least either bit 3 of the accumulator or bit 3 of the operand is " 0 ".
- If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is " 0 ".
- If the INC instruction or the SCAF instruction is executed when the value of the accumulator is other than 0FH.
- If the ORL instruction is executed.
- When Data is written to the accumulator by the MOV instruction or the IN instruction.

3. PORT REGISTERS (PX)

The KI/o port, the KI port, the special ports ($S_{0}, S_{1} / \overline{\mathrm{LED}}$), and the control register are treated as port registers. At reset, port register values are shown below.

Figure 3-1. Port Register Organization

Port Register								At Reset
P0								FFH
P_{10}				Poo				
Kı07	Kı06	Kı05	KıO4	Kıоз	Kı02	Kı01	Kıoo	
P1								$\times \mathrm{FH}^{\text {Note }}$
P_{11}				P01				
K_{13}	K12	K11	Kı0	S $1 / \overline{L E D}$	So	1	1	
P3 (Control register 0)								03H
P_{13}				P_{0}				
0	0	DP9	DP8	TCTL	CARY	MOD ${ }_{1}$	MODo	
P4 (Control register 1)								26H
P_{14}				P04				
0	0	Kı pull-down	So/S pull-down	0	S1/LED mode	Kıo mode	Somode	

Note \times : Refers to the value based on the Kı pin state.

Table 3-1. Relationship between Ports and their Read/Write

Port Name	INPUT Mode		OUTPUT Mode	
	Read	Write	Read	Write
$\mathrm{K}_{1 /}$	Pin state	Output latch	Output latch	Output latch
K_{1}	Pin state	-	-	-
S_{0}	Pin state	-	Note	-
$\mathrm{S}_{1} \overline{\text { LED }}$	Pin state	-	Pin state	-

Note When in OFF mode, " 1 " is normally read.

3.1 Kı/o Port (PO)

The KI/o port is an 8-bit input/output port for key scan output.
INPUT/OUTPUT mode is set by bit 1 of the P4 register.
If a read instruction is executed, the pin state can be read in INPUT mode, whereas the output latch contents can be read in OUTPUT mode.

If the write instruction is executed, data can be written to the output latch regardless of INPUT or OUTPUT mode. When reset, the port is placed in OUTPUT mode; and the value of the output latch (P0) becomes 1111 1111B.
The KI/o port contains the pull-down resistor, allowing pull-down in INPUT mode only.

Caution During double pressing of a key, a high-level output and a low-level output may coincide with each other at the Kı/o port. To avoid this, the low-level output current of the Kı/o port is held low. Therefore, be careful when using the Kı/o port for purposes other than key scan output. The KI/o port is so designed that, even when connected directly to VdD within the normal supply voltage range ($\mathrm{V}_{\mathrm{DD}}=1.8$ to 3.6 V), no problem may occur.

Table 3-2. Kı/o Port (P0)

Bit	b_{7}	$\mathrm{~b}_{6}$	$\mathrm{~b}_{5}$	$\mathrm{~b}_{4}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0}$
Name	$\mathrm{K}_{1 / 07}$	$\mathrm{~K}_{1 / 06}$	$\mathrm{~K}_{1 / 05}$	$\mathrm{~K}_{1 / 04}$	$\mathrm{~K}_{1 / 03}$	$\mathrm{~K}_{1 / 02}$	$\mathrm{~K}_{1 / 01}$	$\mathrm{~K}_{1 / 00}$

$\mathrm{b}_{0}-\mathrm{b}_{7}$: In reading : In INPUT mode, the Kı/o pin's state is read.
In OUTPUT mode, the Kı/o pin's output latch contents are read.
In writing : Data is written to the K//o pin's output latch regardless of INPUT or OUTPUT mode.

3.2 Kı Port/Special Ports (P1)

3.2.1 Kı port (P_{11} : bits $\mathbf{4 - 7}$ of P 1)

The Kı port is to the 4-bit input port for key entry.
The pin state can be read.
Software can be used to set the availability of the pull-down resistor of the Kı port in 4-bit units by means of bit 5 of the P4 register.

When reset, the pull-down resistor is connected.

Table 3-3. Kı/Special Port Register (P1)

Bit	b_{7}	$\mathrm{~b}_{6}$	$\mathrm{~b}_{5}$	$\mathrm{~b}_{4}$	$\mathrm{~b}_{3}$	$\mathrm{~b}_{2}$	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0}$
Name	K_{13}	$\mathrm{~K}_{12}$	$\mathrm{~K}_{11}$	$\mathrm{~K}_{10}$	$\mathrm{~S}_{1} / \overline{\mathrm{LED}}$	S_{0}	(Fixed to "1")	

b2 : In INPUT mode, state of the So pin is read (Read only). In OFF mode, this bit is fixed to " 1 ".
b3 : The state of the $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ pin is read regardless of INPUT/OUTPUT mode (Read only).
$\mathrm{b}_{4}-\mathrm{b}_{7}$: The state of the Kı pin is read (Read only).

Caution In order to prevent malfunction, be sure to input a low level to more than one of pins Kıo to K_{13} when reset is released (when RESET pin changes from low level to high level, or POC is released due to supply voltage startup).

3.2.2 So port (bit 2 of P1)

The So port is the INPUT/OFF mode port.
The pin state can be read by setting this port to INPUT mode with bit 0 of the P4 register.
In INPUT mode, software can be used to set the availability of the pull-down resistor of the S_{0} and $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ port in 2-bit units by means of bit 4 of the P 4 register.

If INPUT mode is canceled (thus set to OFF mode), the pin becomes high-impedance but it also makes that the through current does not flow internally. In OFF mode, "1" can be read regardless of the pin state.

When reset, it is set to OFF mode, thus becoming high-impedance.

3.2.3 $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ (bit 3 of P 1)

The $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ port is the input/output port.
It uses bit 2 of the P4 register to set INPUT or OUTPUT mode. The pin state can be read in both INPUT mode and OUTPUT mode.

When in INPUT mode, software can be used to set the availability of the pull-down resistor of the S_{0} and $\mathrm{S}_{1} / \overline{\mathrm{LED}}$ ports in 2-bit units by means of bit 4 of the P 4 register.

When in OUTPUT mode, the pull-down resistor is automatically disconnected thus becoming the remote transmission display pin (see 4. TIMER).

When reset, it is placed in OUTPUT mode, and high level is output.

3.3 Control Register 0 (P3)

Control register 0 consists of 8 bits. The contents that can be controlled are as shown below. When reset, the register becomes 00000011 B .

Table 3-4. Control Register 0 (P3)

Bit		b_{7}	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	b_{0}	
Name		-	-	DP (Data pointer)		TCTL	CARY	MOD ${ }_{1}$	MOD	
		DP9		DP8						
Set value	0		Fixed to "0"	Fixed to "0"	0	0	1/1	ON	See Table 3-5.	
	1	1			1	1/2	OFF			
When reset		0	0	0	0	0	0	1	1	

b_{0}, b_{1} : These bits specify the carrier frequency and duty ratio of the REM output.
$b_{2} \quad$: This bit specifies the availability of the carrier of the frequency specified by bo and b_{1}. "0" = ON (with carrier); "1" = OFF (without carrier; high level)
b3 : This bit changes the carrier frequency and the timer clock's frequency division ratio. " 0 " = $1 / 1$ (carrier frequency: the specified value of bo and b1; timer clock: fosc/8) " 1 " = $1 / 2$ (carrier frequency: half of the specified value of bo and b_{1}; timer clock: fosc/16)

Table 3-5. Timer Clock and Carrier Frequency Setup

b_{3}	b_{2}	b_{1}	bo	Timer Clock	Carrier Frequency (Duty Ratio)
0	0	0	0	fosc/8	fosc (Duty 1/2)
		0	1		fosc/8 (Duty 1/2)
		1	0		fosc/12 (Duty 1/2)
		1	1		fosc/12 (Duty 1/3)
	1	\times	\times		Without carrier (high level)
1	0	0	0	fosc/16	fosc/2 (Duty 1/2)
		0	1		fosc/16 (Duty 1/2)
		1	0		fosc/24 (Duty 1/2)
		1	1		fosc/24 (Duty 1/3)
	1	\times	\times		Without carrier (high level)

b_{4} and b_{5} : These bits specify the high-order 2 bits (DP_{8} and DP_{9}) of ROM's data pointer.
Remark \times : don't care

3.4 Control Register 1 (P4)

Control register 1 consists of 8 bits. The contents that can be controlled are as shown below.
When reset, the register becomes 0010 0110B.
Table 3-6. Control Register 1 (P4)

Bit		b_{7}	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	b_{0}
Name		-	-	KI Pull-down	S_{0} / S_{1} Pull-down	-	$\mathrm{S}_{1} / \overline{\mathrm{LED}}$ mode	K/o mode	So mode
Set value	0	Fixed	Fixed	OFF	OFF	Fixed	S_{1}	IN	OFF
	1	to "0"	to "0"	ON	ON	to "0"	$\overline{\text { LED }}$	OUT	IN
When reset		0	0	1	0	0	1	1	0

bo : Specifies the input mode of the So port. "0" = OFF mode (high impedance); "1" = IN (INPUT mode).
b_{1} : Specifies the I/O mode of the K/o port.
"0" = IN (INPUT mode); "1" = OUT (OUTPUT mode).
b2 : Specifies the I/O mode of the S1/LED port. " 0 " = S_{1} (INPUT mode); "1" = $\overline{\mathrm{LED}}$ (output mode).
b4 : Specifies the availability of the pull-down resistor in So/S1 port INPUT mode. "0" = OFF (unavailable); "1" = ON (available)
b5 : Specifies the availability of the pull-down resistor in Kı port. "0" = OFF (unavailable); "1" = ON (available).

Remark In OUTPUT mode or in OFF mode, all the pull-down resistors are automatically disconnected.

4. TIMER

4.1 Timer Configuration

The timer is the block used for creating a remote control transmission pattern. As shown in Figure 4-1, it consists of a 9-bit down counter (t 8 to to), a flag (t 9) permitting the 1 -bit timer output, and a zero detecting circuit.

Figure 4-1. Timer Configuration

4.2 Timer Operation

The timer starts (counting down) when a value other than 0 is set for the down counter with a timer operation instruction. The timer operation instructions for making the timer start operation are shown below:

> MOV T0, A
> MOV T1, A
> MOV T, \#data10
> MOV T, @R0

The down counter is decremented (-1) in the cycle of $8 /$ fosc or $16 /$ fosc $^{\text {Note }}$. If the value of the down counter becomes 0 , the zero detecting circuit generates the timer operation end signal to stop the timer operation. At this time, if the timer is in HALT mode (HALT \#×101B) waiting for the timer to stop its operation, the HALT mode is canceled and the instruction following the HALT instruction is executed. The output of the timer operation end signal is continued while the down counter is 0 and the timer is stopped. There is the following relational expression between the timer's time and the down counter's set value.

Timer time $=($ Set value +1$) \times 8 /$ fosc $\left(\right.$ or $16 /$ fosc $\left.{ }^{\text {Note }}\right)$

Note This becomes $16 /$ fosc if bit 3 of the control register is set (to 1).

By setting 1 for the flag (t) which enables the timer output, the timer can output its operation status from the $S_{1} / \overline{\text { LED }}$ pin and the REM pin. The REM pin can also output the carrier while the timer is in operation.

Table 4-1. Timer Output (at $\mathbf{t} \mathbf{=}=1$)

	$\mathrm{S} 1 / \overline{\mathrm{LED}}$ Pin	REM Pin
Timer operating	L	H (or carrier outputNote)
Timer halting	H	L

Note The carrier output results if bit 2 of the control register 0 is cleared (to 0).

Figure 4-2. Timer Output (When Carrier is Not Output)

4.3 Carrier Output

The carrier for remote-controlled transmission can be output from the REM pin by clearing (to 0) bit 2 of the control register 0.

As shown in Figure 4-3, in the case where the timer stops when the carrier is at a high level, the carrier continues to be output until its next fall and then stops due to the function of the carrier synchronous circuit. When the timer starts operation, however, the high-level width of the first carrier may become shorter than the specified width.

Figure 4-3. Timer Output (When Carrier is Output)

Notes 1. Error when the REM output ends: Lead by "the carrier's low-level width" to lag by "the carrier's highlevel width"
2. Error of the carrier's high-level width: 0 to "the carrier's high-level width"

4.4 Software Control of Timer Output

The timer output can be controlled by software. As shown in Figure 4-4, the pulse with a minimum width of 1instruction cycle (8/fosc) can be output.

Figure 4-4. Pulse Output of 1-Instruction Cycle Width

5. STANDBY FUNCTION

5.1 Outline of Standby Function

To save current consumption, two types of standby modes, i.e., HALT mode and STOP mode, are made available. In STOP mode, the system clock stops oscillation. At this time, the OSCIN and OSCout pins are fixed at a low level.

In HALT mode, CPU operation halts, while the system clock continues oscillation. When in HALT mode, the timer (including REM output and $\overline{\mathrm{LED}}$ output) operates.

In either STOP mode or HALT mode, the statuses of the data memory, accumulator, and port register, etc. immediately before the standby mode is set are retained. Therefore, make sure to set the port status for the system so that the current consumption of the whole system is suppressed before the standby mode is set.

Table 5-1. Statuses During Standby Mode

Cautions 1. Write the NOP instruction as the first instruction after STOP mode is released.
2. When standby mode is canceled, the status flag (F) is set (to 1).
3. If, at the point the standby mode has been set, its cancelation condition is met, then the system is not placed in the standby mode. However, the status flag (F) is set (1).

5.2 Standby Mode Setup and Release

The standby mode is set with the HALT \#b3b2b1bob instruction for both STOP mode and HALT mode. For the standby mode to be set, the status flag (F) is required to have been cleared (to 0).

The standby mode is released by the release condition specified with the $\overline{R E S E T}$ ($\overline{R E S E T}$ input; POC) or the operand of HALT instruction. If the standby mode is released, the status flag (F) is set (to 1).

Even when the HALT instruction is executed in the state that the status flag (F) has been set (to 1), the standby mode is not set. If the release condition is not met at this time, the status flag is cleared (to 0). If the release condition is met, the status flag remains set (to 1).

Even in the case when the release condition has been already met at the point that the HALT instruction is executed, the standby mode is not set. Here, also, the status flag (F) is set (to 1).

Caution Depending on the status of the status flag (F), the HALT instruction may not be executed. Be careful about this. For example, when setting HALT mode after checking the key status with the STTS instruction, the system does not enter HALT mode as long as the status flag (F) remains set (to 1) thus sometimes performing an unintended operation. In this case, the intended operation can be realized by executing the STTS instruction immediately after timer setting to clear (to 0) the status flag.

```
Example STTS #03H ;To check the Kı pin status.
    MOV T,#0xxH ;To set the timer
    STTS #05H ;To clear the status flag
    \vdots (During this time, be sure not to execute an instruction that may set the status flag.)
    HALT #05H ;To set HALT mode
```

Table 5-2. Addresses Executed After Standby Mode Released

Release Condition	Address Executed After Released
Reset	0 address
Release condition shown in Table 5-3	The address following the HALT instruction

Table 5-3. Standby Mode Setup (HALT \#b $b_{3} b_{2} b_{1} b_{0} B$) and Release Conditions

Operand Value of HALT Instruction				Setting Mode	Precondition for Setup	Release Condition
b_{3}	b_{2}	b_{1}	bo			
0	0	0	0	STOP	All Kı/o pins are high-level output.	High level is input to at least one of KI pins.
	0	1	1	STOP	All Kı/o pins are high-level output.	High level is input to at least one of KI pins.
	1	1	0	STOPNote 1	The K//oo pin is high-level output.	High level is input to at least one of KI pins.
1	Any of the combinations of b2b1bo above			STOP	[The following condition is	in addition to the above.] High level is input to at least one of S_{0} and S_{1} pins ${ }^{\text {Note } 2}$.
0/1	1	0	1	HALT	-	When the timer's down counter is 0

Notes 1. When setting HALT \#×110B, configure a key matrix by using the Kı/oo pin and the Kı pin so that an internal reset takes effect at the time of program overrun.
2. At least one of the S_{0} and S_{1} pins (the pin used for canceling the standby) must be in INPUT mode. (The internal reset does not take effect even when both pins are in OUTPUT mode.)

Cautions 1. The internal reset takes effect when the HALT instruction is executed with an operand value other than that above or when the precondition has not been satisfied when executing the HALT instruction.
2. If STOP mode is set when the timer's down counter is not 0 (timer operating), the system is placed in STOP mode only after all the 10 bits of the timer's down counter and the timer output permit flag are cleared to 0 .
3. Write the NOP instruction as the first instruction after STOP mode is released.

5.3 Standby Mode Release Timing

(1) STOP Mode Release Timing

Figure 5-1. STOP Mode Cancelation by Release Condition

Caution When a release condition is established in the STOP mode, the device is released from the STOP mode and goes into a wait status. At this time, if the release condition is not held, the device goes into the STOP mode again after the wait time has elapsed. Therefore, when releasing the STOP mode, it is necessary to hold the release condition longer than the wait time.

Figure 5-2. STOP Mode Release by $\overline{\text { RESET }}$ Input

(2) HALT Mode Release Timing

Figure 5-3. HALT Mode Release by Release Condition

Figure 5-4. HALT Mode Release by RESET Input

6. RESET PIN

The system reset takes effect by inputting low level to the RESET pin.
While the $\overline{R E S E T}$ pin is at low level, the system clock oscillator is stopped and the OSCout pin is fixed to highimpedance, the OSCIN pin is fixed to the GND.

If the $\overline{\text { RESET }}$ pin is raised from low level to high level, it executes the program from the 0 address after counting 60 to 116 of the system clock (fosc).

Figure 6-1. Reset Operation by $\overline{\text { RESET }}$ Input

The $\overline{R E S E T}$ pin outputs low level when the POC circuit (mask option) is in operation.

Caution When connecting a reset IC to the RESET pin, ensure that the IC is of the N-ch open-drain output type.

Table 6-1. Hardware Statuses After Resetting

Hardware			- RESET Input in Operation - Resetting by Internal POC Circuit in Operation - Resetting by Other Factors ${ }^{\text {Note } 1}$	- RESET Input During STANDBY Mode - Resetting by the Internal POC Circuit During STANDBY Mode
PC (10 bits)			000H	
SP (1 bit)			OB	
Data memory	R0 = DP		000H	
	R1-R		Undefined	Previous status retained
Accumulator (A)			Undefined	
- Status flag (F) - Carry flag (CY)			OB	
Timer (10 bits)			000H	
Port register		P0	FFH	
		P1	$\times \mathrm{FH}^{\text {Note }} 2$	
Control register		P3	03H	
		P4	26H	

Notes 1. The following resets are available.

- Reset when executing the HALT instruction (when the operand value is illegal or does not satisfy the precondition)
- Reset when executing the RLZ instruction (when $A=0$)
- Reset by stack pointer's overflow or underflow

2. Refers to the value by the Kı pin status.

In order to prevent malfunction, be sure to input a low level to more than one of pins Kıo to Kı3 when reset is released (when $\overline{R E S E T}$ pin changes from low level to high level, or POC is released due to supply voltage startup).

7. POC CIRCUIT (MASK OPTION)

The POC circuit monitors the power supply voltage and applies an internal reset in the microcontroller at the time of battery replacement. If the applied circuit satisfies the following conditions, the POC circuit can be incorporated by the mask option.

- High reliability is not required.
- Clock frequency fosc $=300$ to 500 kHz
- Power supply voltage $\mathrm{V}_{\mathrm{DD}}=2.2$ to 3.6 V
- Operating ambient temperature $\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$

Cautions 1. The one-time PROM product (μ PD66P04B) originally contains the POC circuit.
2. There are cases in which the POC circuit cannot detect a low power supply voltage of less than 1 ms . Therefore, if the power supply voltage has become low for a period of less than 1 ms , the POC circuit may malfunction because it does not generate an internal reset signal.
3. If the applied circuit does not satisfy the conditions above, design the applied circuit in such a manner that the reset takes effect without failure within the power supply voltage range by means of an external reset circuit.
4. In order to prevent malfunction, be sure to input a low level to more than one of pins Kıo to Kı3 when reset is released (when RESET pin changes from low level to high level, or POC is released due to supply voltage startup).

Remarks 1. It is recommended that the POC circuit be incorporated when applied circuits are infrared remotecontrol transmitters for consumer appliances.
2. Even when a POC circuit is incorporated, the externally entered $\overline{\text { RESET }}$ input is valid with the OR condition; therefore, the POC circuit and the $\overline{\text { RESET }}$ input can be used at the same time. However, if the POC circuit detects a low power supply voltage, the $\overline{\text { RESET }}$ pin will be forced to low level; therefore, use an N-ch open drain output or NPN open collector output for the external reset circuit.

7.1 Functions of POC Circuit

The POC circuit has the following functions:

- Generates an internal reset signal when Vdd \leq Vpoc.
- Cancels an internal reset signal when Vdd > Vpoc.

Here, VDD: power supply voltage, Vpoc: POC-detected voltage.

Notes 1. In reality, there is the oscillation stabilization wait time until the circuit is switched to OPERATING mode. The oscillation stabilization wait time is about 60/fosc to about $116 /$ fosc (about 130 to $250 \mu \mathrm{~s}$; when fosc $=455 \mathrm{kHz}$).
2. For the POC circuit to generate an internal reset signal when the power supply voltage has fallen, it is necessary for the power supply voltage to be kept less than the Vpoc for the period of 1 ms or more. Therefore, in reality, there is the time lag of up to 1 ms until the reset takes effect.
3. The POC-detected voltage (V POC) varies between 0.9 to 2.2 V ; thus, the resetting may be canceled at a power supply voltage smaller than the assured range ($\mathrm{V} D \mathrm{D}=1.8$ to 3.6 V). However, as long as the conditions for operating the POC circuit are met, the actual lowest operating power supply voltage becomes lower than the POC-detected voltage. Therefore, there is no malfunction occurring due to the shortage of power supply voltage.

8. SYSTEM CLOCK OSCILLATOR

The system clock oscillator consists of RC oscillation circuits (fosc $=300 \mathrm{kHz}$ to 1 MHz).

Figure 8-1. System Clock

The system clock oscillator stops its oscillation when reset or in STOP mode.

Caution When using the system clock oscillator, wire area indicated by the dotted-line in the diagram as follows to reduce the effects of the wiring capacitance, etc.

- Make the wiring as short as possible.
- Do not allow the wiring to intersect other signal lines. Do not wire close to lines through which large fluctuating currents flow.
- Make sure that the point where the oscillation circuit capacitor is installed is always at the same electric potential as the ground. Never earth with a ground pattern through which large currents flow.
- Do not extract signals from the oscillation circuit.

Remark Theoretically, the oscillation frequency of the system clock is determined by the values of C and R. Actually, however, it also changes depending on supply voltage VDD and operating ambient temperature TA. Moreover, the oscillation frequency of some devices differs from that of the others even when R and C of the same values are connected because of variations in the devices and wiring of the set board. It is therefore difficult to accurately calculate the values of the oscillation frequency and R.
However, an approximate value can be obtained by an approximate calculation (such as an expression calculating the value of R from the fosc value) using data measured under fixed conditions.
The expression shown below was obtained experimentally. This can be used to calculate the resistor R necessary to obtain the oscillation frequency fosc under the conditions of $C=27 \mathrm{pF}, \mathrm{VDD}=3.0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$R=\frac{26400}{\text { fosc }[k H z]}-2.40[k \Omega]\left(\right.$ Where $\mathrm{Vdd}=3.0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and $\left.\mathrm{C}=27 \mathrm{pF}\right)$

Example of fosc vs \mathbf{R} characteristics (Reference)

9. INSTRUCTION SET

9.1 Machine Language Output by Assembler

The bit length of the machine language of this product is 10 bits per word. However, the machine language that is output by the assembler is extended to 16 bits per word. As shown in the example below, the expansion is made by inserting 3-bit extended bits (111) in two locations.

Figure 9-1. An Example of Assembler Output (10 bits extended to 16 bits)
$<1>$ In the case of "ANL A, @ROH"

$<2>$ In the case of "OUT P0, \#data8"

9.2 Circuit Symbol Description

A : Accumulator
ASR : Address Stack Register
addr : Program memory address
CY : Carry flag
data4 : 4-bit immediate data
data8 : 8-bit immediate data
data10 : 10-bit immediate data
F : Status flag
PC : Program Counter
Pn : Port register pair ($\mathrm{n}=0,1,3,4$)
POn : Port register (low-order 4 bits)
P1n : Port register (high-order 4 bits)
ROMn : Bit n of the program memory's $(n=0-9)$
Rn : Register pair
R0n : Data memory (General-purpose register; $n=0-F$)
R1n : Data memory (General-purpose register; $n=0-F$)
SP : Stack Pointer
T : Timer register
T0 : Timer register (low-order 4 bits)
T1 : Timer register (high-order 4 bits)
(\times) : Content addressed with \times

9.3 Mnemonic to/from Machine Language (Assembler Output) Contrast Table

Accumulator Operation Instructions

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
ANL	A, ROn	FBEn			$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{Rmn}) \quad \mathrm{m}=0,1 \mathrm{n}=0-\mathrm{F}$	1	1
	A, R1n	FAEn			$\mathrm{CY} \leftarrow \mathrm{A}_{3} \cdot \mathrm{Rmn}_{3}$		
	A, @ROH	FAF0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \wedge((\mathrm{P} 13),(\mathrm{R} 0))_{7-4} \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM} 7 \end{aligned}$		
	A, @ROL	FBFO			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \wedge((\mathrm{P} 13),(\mathrm{R} 0))_{3-0} \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM}_{3} \end{aligned}$		
	A, \#data 4	FBF1	data4		$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \wedge \text { data } 4 \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \text { data } 43 \end{aligned}$	2	
ORL	A, ROn	FDEn			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \vee(\mathrm{Rmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0-\mathrm{F} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$	1	
	A, R1n	FCEn					
	A, @ROH	FCFO			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \vee((\mathrm{P} 13),(\mathrm{R} 0))_{7-4} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, @ROL	FDF0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \vee((\mathrm{P} 13),(\mathrm{R} 0))_{3-0} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, \#data 4	FDF1	data4		$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \vee \text { data } 4 \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$	2	
XRL	A, ROn	F5En			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{Rmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0-\mathrm{F} \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{Rmn}_{3} \end{aligned}$	1	
	A, R1n	F4En					
	A, @ROH	F4F0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \forall((\mathrm{P} 13),(\mathrm{R} 0))_{7-4} \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM} 7 \end{aligned}$		
	A, @ROL	F5F0			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \forall((\mathrm{P} 13),(\mathrm{RO}))_{3-0} \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM}_{3} \end{aligned}$		
	A, \#data 4	F5F1	data4		$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \forall \text { data } 4 \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \operatorname{data} 43 \end{aligned}$	2	
INC	A	F4F3			$\begin{aligned} & (A) \leftarrow(A)+1 \\ & \text { if }(A)=0 \quad C Y \leftarrow 1 \\ & \text { else } C Y \leftarrow 1 \end{aligned}$	1	
RL	A	FCF3			$\begin{aligned} & \left(A_{n+1}\right) \leftarrow\left(A_{n}\right),\left(A_{0}\right) \leftarrow\left(A_{3}\right) \\ & C Y \leftarrow A_{3} \end{aligned}$		
RLZ	A	FEF3			$\begin{aligned} & \text { if } A=0 \text { reset } \\ & \text { else }\left(A_{n+1}\right) \leftarrow\left(A_{n}\right),\left(A_{0}\right) \leftarrow\left(A_{3}\right) \\ & C Y \leftarrow A_{3} \end{aligned}$		

Input/output Instructions

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
IN	A, P0n	FFF8 + n	-	-	$(A) \leftarrow(P m n) \quad m=0,1 \quad n=0,1,3,4$ $\mathrm{CY} \leftarrow 0$	1	1
	A, P1n	FEF8 + n	-	-			
OUT	POn, A	$E 5 F 8$ + n	-	-	$(\mathrm{Pmn}) \leftarrow(\mathrm{A}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4$		
	P1n, A	$E 4 F 8$ + n	-	-			
ANL	A, P0n	FBF8 + n	-	-	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{Pmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4 \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{Pmn}_{3} \end{aligned}$		
	A, P1n	FAF8 + n	-	-			
ORL	A, P0n	FDF8 + n	-	-	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \vee(\mathrm{Pmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4 \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, P1n	FCF8 + n	-	-			
XRL	A, P0n	F5F8 + n	-	-	$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{Pmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4 \\ & \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{Pmn}_{3} \end{aligned}$		
	A, P1n	F4F8 + n	-	-			

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word		$n=0,1,3,4$	2

Remark Pn: P1n-P0n are dealt with in pairs.

Data Transfer Instruction

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
MOV	A, R0n	FFEn			$\begin{array}{ll} (\mathrm{A}) \leftarrow(\mathrm{Rmn}) & \mathrm{m}=0,1 \quad \mathrm{n}=0-\mathrm{F} \\ \mathrm{CY} \leftarrow 0 & \end{array}$	1	1
	A, R1n	FEEn					
	A, @ROH	FEF0			$\begin{aligned} & (\mathrm{A}) \leftarrow((\mathrm{P} 13),(\mathrm{R} 0))_{7-4} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, @ROL	FFFO			$\begin{aligned} & (\mathrm{A}) \leftarrow((\mathrm{P} 13),(\mathrm{R} 0))_{7-4} \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$		
	A, \#data 4	FFF1	data4		$\begin{aligned} & (A) \leftarrow \text { data } 4 \\ & C Y \leftarrow 0 \end{aligned}$	2	
	ROn, A	E5En			$(\mathrm{Rmn}) \leftarrow(\mathrm{A}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0-\mathrm{F}$	1	
	R1n, A	E4En					

Mnemonic	Operand	Instruction Code			Operation		Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word				
MOV	Rn, \#data8	E6En	data8	-	$($ R1n-R0n) \leftarrow data8	$\mathrm{n}=0-\mathrm{F}$	2	1
	Rn, @R0	E7En	-	-	$(\mathrm{R1n-R0n}) \leftarrow((\mathrm{P} 13),(\mathrm{RO}))$	$\mathrm{n}=1-\mathrm{F}$	1	

Remark Rn: R1n-R0n are dealt with in pairs.

Branch Instructions

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
JMP	addr (Page 0)	E8F1	addr		$\mathrm{PC} \leftarrow$ addr	2	1
	addr (Page 1)	E9F1	addr				
JC	addr (Page 0)	ECF1	addr		$\begin{aligned} & \text { if } C Y=1 \quad P C \leftarrow \text { addr } \\ & \text { else } P C \leftarrow P C+2 \end{aligned}$		
	addr (Page 1)	EAF1	addr				
JNC	addr (Page 0)	EDF1	addr		$\begin{aligned} & \text { if } \mathrm{CY}=0 \quad \mathrm{PC} \leftarrow \text { addr } \\ & \text { else } \mathrm{PC} \leftarrow \mathrm{PC}+2 \end{aligned}$		
	addr (Page 1)	EBF1	addr				
JF	addr (Page 0)	EEF1	addr		$\begin{aligned} & \text { if } \mathrm{F}=1 \quad \mathrm{PC} \leftarrow \text { addr } \\ & \text { else } \mathrm{PC} \leftarrow \mathrm{PC}+2 \end{aligned}$		
	addr (Page 1)	F0F1	addr				
JNF	addr (Page 0)	EFF1	addr		if $\mathrm{F}=0 \quad \mathrm{PC} \leftarrow$ addr else $\mathrm{PC} \leftarrow \mathrm{PC}+2$		
	addr (Page 1)	F1F1	addr				

Caution 0 and 1, which refer to PAGE0 and 1, are not written when writing mnemonics.

Subroutine Instructions

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word		2	
CALL	addr (Page 0)	E6F2	E8F1	addr	$\mathrm{SP} \leftarrow \mathrm{SP}+1, \mathrm{ASR} \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow \mathrm{addr}$	3	
	addr (Page 1)	E6F2	E9F1	addr		1	1
RET		E8F2			$\mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}-1$	1	

Caution 0 and 1, which refer to PAGE0 and 1, are not written when writing mnemonics.

Timer Operation Instructions

Mnemonic	Operand	Instruction Code			Operation		Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word				
MOV	A, T0	FFFF			$\begin{aligned} & (\mathrm{A}) \leftarrow(\mathrm{Tn}) \\ & \mathrm{CY} \leftarrow 0 \end{aligned}$	$\mathrm{n}=0,1$	1	1
	A, T1	FEFF						
	TO, A	E5FF			$(\mathrm{Tn}) \leftarrow(\mathrm{A})$	$\mathrm{n}=0,1$		
	T1, A	F4FF			(T) $\mathrm{n} \leftarrow 0$			

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
MOV	T, \#data10	E6FF	data10		$(\mathrm{T}) \leftarrow$ data10	1	1
	T, @R0	F4FF			$(\mathrm{T}) \leftarrow((\mathrm{P} 13),(\mathrm{RO}))$		

Others

Mnemonic	Operand	Instruction Code			Operation	Instruction Length	Instruction Cycle
		1st Word	2nd Word	3rd Word			
HALT	\#data4	E2F1	data4		Standby mode	2	1
STTS	\#data4	E3F1	data4		if statuses match $\mathrm{F} \leftarrow 1$ else $\mathrm{F} \leftarrow 0$		
	ROn	E3En			if statuses match $\mathrm{F} \leftarrow 1$ else $\mathrm{F} \leftarrow 0$ $\mathrm{n}=0-\mathrm{F}$	1	
SCAF		FAF3			$\begin{aligned} & \text { if } \mathrm{A}=0 \mathrm{FH} \quad \mathrm{CY} \leftarrow 1 \\ & \text { else } \mathrm{CY} \leftarrow 0 \end{aligned}$		
NOP		E0E0			$\mathrm{PC} \leftarrow \mathrm{PC}+1$		

9.4 Accumulator Operation Instructions

ANL A, ROn

ANL A, R1n

$$
\begin{array}{ll}
<1>\text { Instruction code } & : \begin{array}{lll|l|l|l|l|}
\hline 1 & 1 & 0 & 1 & R_{4} & 0 & R_{3} R_{2} R_{1} R_{0} \\
<2>\text { Cycle count } & : 1 \\
<3>\text { Function } & :(A) \leftarrow(A) \wedge(R m n) \quad m=0,1 \quad n=0 \text { to } F \\
& C Y \leftarrow A_{3} \cdot R m n_{3}
\end{array}
\end{array}
$$

The accumulator contents and the register Rmn contents are ANDed and the results are entered in the accumulator.

ANL A, @ROH
ANL A, @ROL

$$
\begin{array}{ll}
<1>\text { Instruction code } & : \begin{array}{|l|l|l|l|l}
1 & 1 & 0 & 10 / 1 & 1
\end{array} 000 \\
<2>\text { Cycle count } & : 1 \\
<3>\text { Function } & :(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge((\mathrm{P} 13),(\mathrm{R} 0))_{7-4}(\text { in the case of ANL A, @ROH) } \\
& \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM} 7 \\
& (\mathrm{~A}) \leftarrow(\mathrm{A}) \wedge((\mathrm{P} 13),(\mathrm{R} 0))_{3-0}(\text { in the case of ANL A, @ROL) } \\
& \mathrm{CY} \leftarrow \mathrm{~A}_{3} \cdot \mathrm{ROM}_{3}
\end{array}
$$

The accumulator contents and the program memory contents specified with the control register P13 and register pair R10-Roo are ANDed and the results are entered in the accumulator.
If H is specified, b_{7}, b_{6}, b_{5} and b_{4} take effect. If L is specified, b_{3}, b_{2}, b_{1} and b_{0} take effect.

- Program memory (ROM) organization

Valid bits at the time of accumulator operation

ANL A, \#data4

The accumulator contents and the immediate data are ANDed and the results are entered in the accumulator.

ORL A, ROn

ORL A, R1n

<2> Cycle count : 1
$<3>$ Function $\quad:(A) \leftarrow(A) \vee(R m n) \quad m=0,1 \quad n=0$ to F $C Y \leftarrow 0$

The accumulator contents and the register Rmn contents are ORed and the results are entered in the accumulator.

ORL A, @ROH
ORL A, @ROL

<1> Instruction code : | 1 | 1 | 1 | 0 | $0 / 1$ | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count : 1
$<3>$ Function $\quad:(A) \leftarrow(A) \vee(P 13),(R 0))_{7-4}$ (in the case of ORL A, @R0H)
$(\mathrm{A}) \leftarrow(\mathrm{A}) \vee(\mathrm{P} 13),(\mathrm{RO}))_{3-0}($ in the case of ORL A, @R0L)
$C Y \leftarrow 0$
The accumulator contents and the program memory contents specified with the control register P13 and register pair $\mathrm{R}_{10}-\mathrm{R}_{00}$ are ORed and the results are entered in the accumulator.
If H is specified, b_{7}, b_{6}, b_{5} and b_{4} take effect. If L is specified, b_{3}, b_{2}, b_{1} and b_{0} take effect.

ORL A, \#data4

$<1>$ Instruction code $:$| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count
: 1
$<3>$ Function $\quad:(A) \leftarrow(A) \vee$ data 4
$C Y \leftarrow 0$
The accumulator contents and the immediate data are exclusive-ORed and the results are entered in the accumulator.

XRL A, ROn

XRL A, R1n

<2> Cycle count : 1
$<3>$ Function $\quad:(A) \leftarrow(A) \forall(R m n) \quad m=0,1 \quad n=0$ to F
$C Y \leftarrow A_{3} \cdot R m n 3$
The accumulator contents and the register Rmn contents are ORed and the results are entered in the accumulator.

XRL A, @ROH

XRL A, @ROL

<1> Instruction code: : | 1 | 0 | 1 | 0 | $0 / 1$ | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $0 \quad 0$

<2> Cycle count : 1
$<3>$ Function $\quad:(A) \leftarrow(A) \forall(P 13),(R 0)) 7-4$ (in the case of XRL A, @R0H) $C Y \leftarrow A_{3} \cdot R_{1} M_{7}$
$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{P} 13),(\mathrm{R} 0))_{3-0}$ (in the case of XRL A, @R0L)
$\mathrm{CY} \leftarrow \mathrm{A}_{3} \cdot \mathrm{ROM}_{3}$
The accumulator contents and the program memory contents specified with the control register P13 and register pair $R_{10}-R_{00}$ are exclusive-ORed and the results are entered in the accumulator.
If H is specified, b_{7}, b_{6}, b_{5}, and b_{4} take effect. If L is specified, b_{3}, b_{2}, b_{1}, and b_{0} take effect.

XRL A, \#data4

$$
\begin{aligned}
& <1>\text { Instruction code }: \begin{array}{|l|lll|l|llll|}
\hline 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline
\end{array} \\
& <2>\text { Cycle count : } 1 \\
& <3>\text { Function } \quad:(\mathrm{A}) \leftarrow(\mathrm{A}) \forall \text { data } 4 \\
& C Y \leftarrow \mathrm{~A}_{3} \cdot \operatorname{data}^{2} 4_{3}
\end{aligned}
$$

The accumulator contents and the immediate data are exclusive-ORed and the results are entered in the accumulator.

INC A

$<1>$ Instruction code : | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$<2>$ Cycle count : 1
$<3>$ Function $\quad:(A) \leftarrow(A)+1$
if $\quad A=0 \quad C Y \leftarrow 1$
else $C Y \leftarrow 0$
The accumulator contents are incremented (+1).

RL A

$$
\begin{array}{ll}
<1>\text { Instruction code } & : \begin{array}{|l|lll|llll}
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array} 1 \\
\hline 2>\text { Cycle count } & : 1 \\
<3>\text { Function } & :\left(A_{n}+1\right) \leftarrow(A n),\left(A_{0}\right) \leftarrow\left(A_{3}\right) \\
& C Y \leftarrow A_{3}
\end{array}
$$

The accumulator contents are rotated anticlockwise bit by bit.

RLZ A

<1> Instruction code : | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$<2>$ Cycle count : 1
$<3>$ Function : if $A=0$ reset
else $\quad\left(A_{n}+1\right) \leftarrow(A n),\left(A_{0}\right) \leftarrow\left(A_{3}\right)$
$C Y \leftarrow A_{3}$
The accumulator contents are rotated anticlockwise bit by bit.
If $\mathrm{A}=\mathrm{OH}$ at the time of command execution, an internal reset takes effect.

9.5 Input/Output Instructions

IN A, POn

IN A, P1n

<2> Cycle count : 1
$<3>$ Function $\quad:(A) \leftarrow(P m n) \quad m=0,1 \quad n=0,1,3,4$
$C Y \leftarrow 0$
The port Pmn data is loaded (read) onto the accumulator.

OUT POn, A

OUT P1n, A

<2> Cycle count : 1
$<3>$ Function $\quad:(\mathrm{Pmn}) \leftarrow(\mathrm{A}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4$
The accumulator contents are transferred to port Pmn to be latched.

ANL A, POn

ANL A, P1n

<2> Cycle count : 1
$<3>$ Function $\quad:(A) \leftarrow(A) \wedge(P m n) \quad m=0,1 \quad n=0,1,3,4$
$C Y \leftarrow A_{3} \cdot P m n$
The accumulator contents and the port Pmn contents are ANDed and the results are entered in the accumulator.

ORL A, POn

ORL A, P1n

<2> Cycle count : 1
<3>Function $\quad:(A) \leftarrow(A) \vee(P m n) \quad m=0,1 \quad n=0,1,3,4$
$C Y \leftarrow 0$
The accumulator contents and the port Pmn contents are ORed and the results are entered in the accumulator.

XRL A, P0n

XRL A, P1n

<2> Cycle count : 1
$<3>$ Function $\quad:(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{Pmn}) \quad \mathrm{m}=0,1 \quad \mathrm{n}=0,1,3,4$ $C Y \leftarrow A_{3} \cdot P m n$
The accumulator contents and the port Pmn contents are exclusive-ORed and the results are entered in the accumulator.

OUT Pn, \#data8

<2> Cycle count : 1
$<3>$ Function $\quad:(\mathrm{Pn}) \leftarrow$ data8 $\mathrm{n}=0,1,3,4$
The immediate data is transferred to port Pn. In this case, port Pn refers to $P_{1 n}-P_{0 n}$ operating in pairs.

9.6 Data Transfer Instruction

```
MOV A, ROn
MOV A, R1n
    <1> Instruction code:
    <2> Cycle count :1
    <3>Function :(A)\leftarrow(Rmn) m=0,1 n=0 to F
                        CY}\leftarrow
```

The register Rmn contents are transferred to the accumulator.

MOV A, @ROH

<1> Instruction code : | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$<2>$ Cycle count : 1
$<3>$ Function $\quad:(\mathrm{A}) \leftarrow((\mathrm{P} 13),(\mathrm{R} 0)) 7-4$
$C Y \leftarrow 0$
The high-order 4 bits ($\mathrm{b}_{7} \mathrm{~b} 6 \mathrm{~b} 5 \mathrm{~b} 4$) of the program memory specified with control register P13 and register pair $R_{10-} R_{00}$ are transferred to the accumulator. bs is ignored.

MOV A, @ROL

<1> Instruction code : | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$<2>$ Cycle count : 1
$<3>$ Function $\quad:(\mathrm{A}) \leftarrow((\mathrm{P} 13),(\mathrm{R} 0)) 3-0$
$C Y \leftarrow 0$
The low-order 4 bits ($\mathrm{b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$) of the program memory specified with control register P13 and register pair $R_{10-} R_{00}$ are transferred to the accumulator. bs is ignored.

- Program memory (ROM) contents

MOV A, \#data4

The immediate data is transferred to the accumulator.

MOV ROn, A
MOV R1n, A

$<2>$ Cycle count : 1
$<3>$ Function $\quad:(R m n) \leftarrow(A) \quad m=0,1 \quad n=0$ to F
The accumulator contents are transferred to register Rmn.

MOV Rn, \#data8

$<1>$ Instruction code : | 0 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |$R_{3} R_{2} R_{1} R_{0}$

<2> Cycle count : 1
$<3>$ Function $\quad:($ R1n-R0n $) \leftarrow$ data8 $n=0-F$
The immediate data is transferred to the register. Using this instruction, registers operate as register
pairs.
The pair combinations are as follows:

$$
\begin{array}{cl}
R_{0}: R_{10}-R_{00} \\
R_{1}: R_{11}-R_{01} \\
: & \\
R_{E}: R_{1 E}-R_{0 E} & \\
R_{F}: R_{1 F-} R_{0 F} & \begin{array}{l}
\text { Lower column } \\
\text { Higher column }
\end{array}
\end{array}
$$

MOV Rn, @RO

$<1>$ Instruction code: : | 0 | 0 | 1 | 1 | 1 | 0 | $R_{3} R_{2} R_{1} R_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count : 1
$<3>$ Function $\quad:($ R1n-R0n $) \leftarrow((P 13), R 0)) \quad n=1$ to F
The program memory contents specified with control register P13 and register pair R10-Roo are transferred to register pair R1n-R0n. The program memory consists of 10 bits and has the following state after the transfer to the register.

Program memory

The high-order 2 bits of the program memory address is specified with the control register (P13).

9.7 Branch Instructions

The program memory consists of pages in steps of $1 \mathrm{~K}(000 \mathrm{H}$ to $3 F F H)$. However, as the assembler automatically performs page optimization, it is unnecessary to designate pages. The pages allowed for each product are as follows.
$\mu \mathrm{PD} 6604$ (ROM: 1K steps) : page 0

JMP addr

$<2>$ Cycle count : 1
$<3>$ Function $\quad: \mathrm{PC} \leftarrow$ addr
The 10 bits (PC9-0) of the program counter are replaced directly by the specified address addr (a9 to ao).

JC addr

> <2> Cycle count : 1
> $<3>$ Function \quad : if $\quad \mathrm{CY}=1 \quad \mathrm{PC} \leftarrow$ addr else $P C \leftarrow P C+2$
> If the carry flag CY is set (to 1), a jump is made to the address specified with addr (a9 to ao).

JNC addr

<2> Cycle count : 1
$<3>$ Function $\quad:$ if $\quad \mathrm{CY}=0 \quad \mathrm{PC} \leftarrow$ addr else $P C \leftarrow P C+2$
If the carry flag $C Y$ is cleared (to 0), a jump is made to the address specified with addr (a9 to a0).

JF addr

$$
\begin{aligned}
& <1>\text { Instruction code : page } 0 \begin{array}{|l|llll|l|llll}
\hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{array} \text {; page } 1 \begin{array}{|l|lll|l|llll|}
\hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

> <2> Cycle count
> : 1
> $<3>$ Function \quad : if $\mathrm{F}=1 \quad \mathrm{PC} \leftarrow$ addr else $P C \leftarrow P C+2$

If the status flag F is set (to 1), a jump is made to the address specified with addr (a9 to a0).

JNF addr

$$
\begin{aligned}
& \text { <2> Cycle count } \\
& \text { : } 1 \\
& <3>\text { Function } \quad: \text { if } \mathrm{F}=0 \quad \mathrm{PC} \leftarrow \text { addr } \\
& \text { else } \mathrm{PC} \leftarrow \mathrm{PC}+2
\end{aligned}
$$

If the status flag F is cleared (to 0), a jump is made to the address specified with addr (a9 to ao).

9.8 Subroutine Instructions

The program memory consists of pages in steps of $1 \mathrm{~K}(000 \mathrm{H}$ to $3 F F H)$. However, as the assembler automatically performs page optimization, it is unnecessary to designate pages. The pages allowed for each product are as follows.
μ PD6604 (ROM: 1K steps) : page 0
μ PD66P04B (PROM: 1K steps) : page 0

CALL addr

$<2>$ Cycle count : 2
$<3>$ Function $\quad: S P \leftarrow S P+1$
ASR $\leftarrow \mathrm{PC}$
$\mathrm{PC} \leftarrow$ addr
Increments (+1) the stack pointer value and saves the program counter value in the address stack register. Then, enters the address specified with the operand addr (a9 to ao) into the program counter. If a carry is generated when the stack pointer value is incremented (+1), an internal reset takes effect.

RET

<1> Instruction code: | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count : 1
$<3>$ Function $\quad: \mathrm{PC} \leftarrow \mathrm{ASR}$ $\mathrm{SP} \leftarrow \mathrm{SP}-1$
Restores the value saved in the address stack register to the program counter. Then, decrements (-1) the stack pointer.
If a borrow is generated when the stack pointer value is decremented (-1), an internal reset takes effect.

9.9 Timer Operation Instructions

mov A, to
MOV A, T1

<2> Cycle count : 1
<3> Function $\quad:(A) \leftarrow(T n) \quad n=0,1$ $\mathrm{CY} \leftarrow 0$
The timer Tn contents are transferred to the accumulator. T1 corresponds to ($\mathrm{t}, \mathrm{tz}, \mathrm{t} 7, \mathrm{tt}$); T0 corresponds to ($\mathrm{t}, \mathrm{t}, \mathrm{t}, \mathrm{t}, \mathrm{t}$).

MOV TO, A
MOV T1, A

<2> Cycle count : 1
<3> Function $\quad:(\mathrm{Tn}) \leftarrow(\mathrm{A}) \quad \mathrm{n}=0,1$
The accumulator contents are transferred to the timer register Tn. T1 corresponds to (to, ts, t7, tt); T0 corresponds to ($\mathrm{t} 5, \mathrm{t} 4, \mathrm{t}_{3}, \mathrm{t}_{2}$). After executing this instruction, if data is transferred to $\mathrm{T} 1, \mathrm{t}_{1}$ becomes 0 ; if data is transferred to TO , to becomes 0 .

MOV T, \#data10

<2> Cycle count : 1
<3>Function : $(T) \leftarrow$ data 10
The immediate data is transferred to the timer register T (to-to).
Remark The timer time is set with (set value +1) $\times 8 /$ fosc or $16 /$ fosc.

MOV T, @R0

<1> Instruction code : | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count : 1
$<3>$ Function $\quad:(\mathrm{T}) \leftarrow((\mathrm{P} 13),(\mathrm{RO}))$
Transfers the program memory contents to the timer register T (t 9 to to) specified with the control register P13 and the register pair R10-Ro0.
The program memory, which consists of 10 bits, is placed in the following state after the transfer to the register.

The high-order 2 bits of the program memory address are specified with the control register (P13).

Caution When setting a timer value in the program memory, ensure to use the DT directive.

9.10 Others

HALT \#data4

$<1>$ Instruction code : | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 0 | 0 | 0 | 0 | 0 | 0 | d_{3} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$d_{2} d_{1} d_{0}$

$<2>$ Cycle count :1
$<3>$ Function : Sandby mode
Places the CPU in standby mode.
The condition for having the standby mode (HALT/STOP mode) canceled is specified with the immediate data.

STTS ROn

<1> Instruction code : | 0 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{R}_{3} \mathrm{R}_{2} \mathrm{R}_{1} \mathrm{R}_{0}$

<2> Cycle count : 1
<3> Function : if statuses match $\mathrm{F} \leftarrow 1$

$$
\text { else } \mathrm{F} \leftarrow 0 \quad \mathrm{n}=0 \text { to } \mathrm{F}
$$

Compares the $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~K}_{1 / 0}, \mathrm{~K}_{1}$, and TIMER statuses with the register Ron contents. If at least one of the statuses coincides with the bits that have been set, the status flag F is set (to 1).
If none of them coincide, the status flag F is cleared (to 0).

STTS \#data4

Compares the $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~K}_{1 / 0}, \mathrm{~K}_{1}$, and TIMER statuses with the immediate data contents. If at least one of the statuses coincides with the bits that have been set, the status flag F is set (to 1).
If none of them coincide, the status flag F is cleared (to 0).

SCAF (Set Carry If Acc = Fh)

<1> Instruction code: : | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count : 1
$<3>$ Function \quad : if $\quad A=0 F H \quad C Y \leftarrow 1$ else $C Y \leftarrow 0$
Sets the carry flag CY (to 1) if the accumulator contents are FH.
The accumulator values after executing the SCAF instruction are as follows:

Accumulator Value		Carry Flag
Before execution	After execution	
$x \times \times 0$	0000	0 (clear)
$x \times 01$	0001	0 (clear)
$\times 011$	0011	0 (clear)
0111	0111	0 (clear)
1111	1111	1 (set)

Remark \times : don't care

NOP

<1> Instruction code: : | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

<2> Cycle count : 1
$<3>$ Function $\quad: \mathrm{PC} \leftarrow \mathrm{PC}+1$
No operation

10. ASSEMBLER RESERVED WORDS

10.1 Mask Option Directives

When creating the μ PD6604 program, it is necessary to use a mask option directive in the assembler's source program to specify a mask option.

10.1.1 OPTION and ENDOP directives

From the OPTION directive on to the ENDOP directive are called the mask option definition block. The format of the mask option definition block is as follows:

Format:

| $\frac{\text { Symbol field }}{[\text { Label: }]} \quad$Mnemonic field
 OPTION | | |
| :---: | :---: | :---: | :---: |
| \vdots | | |
| ENDOP Comment $]$ | | |

10.1.2 Mask option definition directive

The directives that can be used in the mask option definition block are listed in Table 10-1.
An example of the mask option definition is shown below.

Example:
Symbol field

Mnemonic field	Operand field	
OPTION		
USEPOC		Comment field
ENDOP		

Table 10-1. List of Mask Option Definition Directives

Name	Mask Option Definition Directive	PRO File	
		Address value	Data value
POC	USEPOC (POC circuit incorporated)	2044 H	01
	NOUSEPOC (Without POC circuit)		00

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Note Work out the rms with: $[\mathrm{rms}]=[$ Peak value $] \times \sqrt{\text { Duty }}$.

Caution Product quality may suffer if the absolute rating is exceeded for any parameter, even momentarily. In other words, an absolute maxumum rating is a value at which the possibility of psysical damage to the product cannnot be ruled out. Care must therefore be taken to ensure that the these ratings are not exceeded during use of the product.

Recommended Power Supply Voltage Range ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	VDD	fosc $=300$ to 500 kHz	1.8	3.0	3.6	V
		fosc $=500 \mathrm{kHz}$ to 1 MHz	2.2	3.0	3.6	V
		When using the POC circuit (mask option) 	TA $=-20$ to $+70^{\circ} \mathrm{C}$ fosc $=300$ to 500 kHz	2.2	3.0	3.6
	V					

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 3.6 V)

Parameter	Symbol	Test Conditions			MIN.	TYP.	MAX.	Unit
High-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	$\overline{\text { RESET }}$			0.8 VDD		VDD	V
	$\mathrm{V}_{\mathbf{H} 2}$	K/Io			0.65 VDD		VDD	V
	V ${ }^{\text {н }}$	Kı, So, S ${ }_{1}$			0.65 VDD		VDD	V
Low-level input voltage	VILT	RESET			0		0.2 VDD	V
	VIL2	Kıo			0		0.3 VDD	V
	VIL3	Kı, So, St			0		0.15 VDD	V
High-level input leakage current	ILH1	Kı $\mathrm{V}_{1}=\mathrm{V}$ DD, pull-down resistor not incorporated					3	$\mu \mathrm{A}$
	ILH2	S_{0}, S_{1} $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor not incorporated					3	$\mu \mathrm{A}$
Low-level input leakage current	IUL1	$\mathrm{K}_{1} \quad \mathrm{~V}_{1}=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
	lut2	Kl/o $\quad V_{1}=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
	luı3	$S_{0}, S_{1} \quad V_{1}=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
High-level output voltage	Vor1	REM, LED, Kıo		$\mathrm{IOH}=-0.3 \mathrm{~mA}$	0.8 VDD			V
Low-level output voltage	Vol1	REM, $\overline{\text { LED }}$		$\mathrm{loL}=0.3 \mathrm{~mA}$			0.3	V
	Vol2	Kıo		$\mathrm{loL}=15 \mu \mathrm{~A}$			0.4	V
High-level output current	Ion1	REM		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, V OH $=1.0 \mathrm{~V}$	-5	-9		mA
	Іон2	KıIo		V DD $=3.0 \mathrm{~V}, \mathrm{~V} \mathrm{OH}=2.2 \mathrm{~V}$	-2.5	-5		mA
Low-level output current	loL1	K/Io		V do $=3.0 \mathrm{~V}, \mathrm{VoL}=0.4 \mathrm{~V}$	30	70		$\mu \mathrm{A}$
				V do $=3.0 \mathrm{~V}, \mathrm{Vol}=2.2 \mathrm{~V}$	100	220		$\mu \mathrm{A}$
Built-in pull-up resistor	R_{1}	RESET			25	50	100	k Ω
Built-in pull-down resistor	R_{2}	RESET			2.5	5	15	k Ω
	R3	Kı, So, S ${ }_{1}$			75	150	300	k Ω
	R4	Kıo			130	250	500	k Ω
Data hold power supply voltage	Vdoor	In STOP mode			0.9		3.6	V
Supply current ${ }^{\text {Note }}$	IDD1	OPERATING mode	fosc $=1.0 \mathrm{MHz}, \mathrm{V}_{\text {do }}=3 \mathrm{~V} \pm 10 \%$			0.5	1.0	mA
			fosc $=455 \mathrm{kHz}, \mathrm{VDD}=3 \mathrm{~V} \pm 10 \%$			0.35	0.7	mA
	IDD2	HALT mode	fosc	$1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		0.45	0.9	mA
			fos	$455 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$		0.3	0.6	mA
	Ido3	STOP mode	VDD	$3 \mathrm{~V} \pm 10$ \%		1.0	8.0	$\mu \mathrm{A}$
			VDD	$3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$

Note The POC circuit current and the current flowing in the built-in pull-up resistor are not included.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 3.6 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Command execution time	tcy	$V_{\text {do }}=2.2$ to 3.6 V		7.9		27	$\mu \mathrm{s}$
				15.9		27	$\mu \mathrm{s}$
$\mathrm{K}, \mathrm{S}_{0}, \mathrm{~S}_{1}$ high-level width	th			10			$\mu \mathrm{s}$
		When canceling standby mode	HALT mode	10			$\mu \mathrm{s}$
			STOP mode	Note			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

Note $10+36 /$ fosc + oscillation growth time

Remark tcy $=$ 8/fosc (fosc: System clock oscillator frequency)

POC Circuit (mask option $\left.{ }^{\text {Note }}{ }^{1}\right)\left(\mathrm{T}_{\mathrm{A}}=-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
POC-detected voltage ${ }^{\text {Note 2 }}$	V Poc		0.9	1.6	2.2	V
POC circuit current	IPoc			0.9	1.0	$\mu \mathrm{~A}$

Notes 1. Operates effectively under the conditions of $\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$, $\mathrm{VDD}=2.2$ to 3.6 V , and fosc $=$ 300 to 500 kHz .
2. Refers to the voltage with which the POC circuit cancels an internal reset. If VPOC $<V_{D D}$, the internal reset is canceled.
From the time of VPOC \geq VDD until the internal reset takes effect, lag of up to 1 ms occurs. When the period of $V_{P O C} \geq$ VDD lasts less than 1 ms , the internal reset may not take effect.

System Clock Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+8{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 3.6 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Oscillator frequency	fosc		300	455	500	kHz
		$\mathrm{V}_{\mathrm{DD}}=2.2$ to 3.6 V	300	455	1000	kHz

Recommended Oscillation Circuit Constant ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 3.6 V) (Reference value)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Capacity of oscillation capacitor	C		22	27	33	pF
Oscillation resistance	R			56		$\mathrm{k} \Omega$

An external circuit example

12. CHARACTERISTIC CURVE (REFERENCE VALUES)

Idd vs T_{A} Characteristic Example
($\mathrm{C}=27 \mathrm{pF}, \mathrm{VdD}=3.0 \mathrm{~V}$)

Іон vs $\mathrm{V}_{\mathbf{\prime}}$ Characteristic Example (REM)
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)

High-level output voltage V он [V]
$\star \quad$ fosc vs VdD Characteristic Example ($\mathrm{C}=27 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

lol vs Vol Characteristic Example (REM, $\overline{\text { LED }}$)
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}\right.$)

Іон vs Vон Characteristic Example ($\overline{\text { LED }}$) $^{\text {I }}$
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)

13. APPLIED CIRCUIT EXAMPLE

Example of Application to System

- Remote-control transmitter (40 keys; mode selection switch accommodated)

- Remote-control transmitter (48 keys accommodated)

Remark When the POC circuit of the mask option is used effectively, it is not necessary to connect the capacitor enclosed in the dotted lines.
14. PACKAGE DRAWINGS
(1) μ PD6604GS

20 PIN PLASTIC SOP (300 mil)

detail of lead end

NOTE
Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	12.7 ± 0.3	0.500 ± 0.012
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.42_{-0.07}^{+0.08}$	$0.017_{-0.004}^{+0.003}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55 ± 0.05	0.061 ± 0.002
H	7.7 ± 0.3	$0.303^{2} 0.012$
I	5.6 ± 0.2	$0.220_{-0.009}^{+0.008}$
J	1.1	0.043
K	$0.22_{-0.07}^{+0.08}$	$0.009_{-0.004}^{+0.003}$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3_{-3^{\circ}}^{\circ+7}$	$3_{-3^{\circ}}^{\circ}$
		P20GM-50-300B, C-5

Remark The dimensions and materials of the ES model are the same as those of mass production model.
(2) μ PD6604GS-GJG

20 PIN PLASTIC SHRINK SOP (300 mil)

detail of lead end

NOTE

1. Controlling dimension- millimeter.
2. Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	6.7 ± 0.3	$0.264_{-0.013}^{+0.012}$
B	0.575 MAX.	0.023 MAX.
C	0.65 (T.P.)	0.026 (T.P.)
D	$0.32_{-0.07}^{+0.08}$	$0.013_{-0.004}^{+0.003}$
E	0.125 ± 0.075	0.005 ± 0.003
F	2.0 MAX.	0.079 MAX.
G	1.7 ± 0.1	$0.067_{-0.005}^{+0.004}$
H	8.1 ± 0.3	0.319 ± 0.012
I	6.1 ± 0.2	0.240 ± 0.008
J	1.0 ± 0.2	$0.039_{-0.008}^{+0.009}$
K	$0.15{ }_{-0.05}^{+0.10}$	$0.006{ }_{-0.002}^{+0.004}$
L	0.5 ± 0.2	$0.020_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$

Remark The dimensions and materials of the ES model are the same as those of mass production model.

15. RECOMMENDED SOLDERING CONDITIONS

Carry out the soldered packaging of this product under the following recommended conditions.
For details of the soldering conditions, refer to information material Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than the recommended conditions, please consult one of our NEC sales representatives.

Table 15-1. Soldering Conditions for Surface-Mount Type
μ PD6604GS- $-\times \times \times \quad: 20$-pin plastic SOP (300 mil)
μ PD6604GS- $\times \times \times-$ GJG: 20 -pin plastic shrink SOP $(300 \mathrm{mil})$

Soldering Method	\quad Soldering Condition	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$; time: 30 secs. max. $\left(210^{\circ} \mathrm{C}\right.$ or higher); count: no more than twice	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$; time: 40 secs. max. $\left(200^{\circ} \mathrm{C}\right.$ or higher); count: no more than twice	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max.; time: 10 secs. max.; count: once Preliminary heat temperature: $120^{\circ} \mathrm{C}$ max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or less; time: 3 secs or less (for each side of the device)	-

Caution Using more than one soldering method should be avoided (except in the case of partial heating).

* APPENDIX A. DEVELOPMENT TOOLS

An emulator is provided for the μ PD6604.

Hardware

- Emulator (EB-6133 ${ }^{\text {Note }}$)

It is used to emulate the $\mu \mathrm{PD} 6604$.

Note This is a product of Naito Densei Machida Mfg. Co., Ltd. For details, consult Naito Densei Machida Mfg. Co., Ltd. (044-822-3813).

Software

- Assembler (AS6133)
- This is a development tool for remote control transmitter software.

Part Number List of AS6133

Host Machine	OS	Supply Medium	Part Number
PC-9800 series (CPU: 80386 or more)	MS-DOS $^{\text {TM }}$ (Ver. 5.0 to Ver. 6.2)	3.5 -inch 2HD	μ S5A13AS6133
IBM PC/AT ${ }^{\text {TM }}$ compatible	MS-DOS (Ver. 6.0 to Ver. 6.22)	3.5 -inch 2HC	μ S7B13AS6133
	PC DOS ${ }^{\text {TM }}$ (Ver. 6.1 to Ver. 6.3)		

Caution Although Ver.5.0 or later has a task swap function, this function cannot be used with this software.

APPENDIX B. FUNCTIONAL COMPARISON BETWEEN μ PD6604 AND OTHER SUBSERIES

Item		μ PD6604	μ PD6133	μ PD6134	μ PD6600A
ROM capacity		1002×10 bits	512×10 bits	1002×10 bits	512×10 bits
RAM capacity		32×4 bits			32×5 bits
Stack		1 level (multiplexed with RF of RAM)			3 levels (multiplexed with RAM)
Key matrix		$8 \times 6=48$ keys			$8 \times 4=32$ keys
So (S-IN) input		Read by P01 register (with function to release standby mode)			Read by left shift instruction
S $1 / \overline{\text { LED }}$ (S-OUT)		I/O (with function to release standby mode)			Output
Clock frequency		RC oscillation	Ceramic oscillat		Ceramic oscillation
		- $\mathrm{fx}=300 \mathrm{kHz}$ to 1 MHz - $\mathrm{fx}=300$ to 500 kHz (with POC circuit)			$\mathrm{fx}=400$ to 500 kHz
Timer	Clock	fx/8, fx/16			fx/8
	Count start	Writing count value			Writing count value and P1 register value
Carrier	Frequency	- $\mathrm{fx}_{\mathrm{x}}, \mathrm{fx} / 8, \mathrm{fx} / 12$ (timer clock: $\mathrm{fx} / 8$) - $\mathrm{fx}_{\mathrm{x}} / 2, \mathrm{fx}_{\mathrm{x}} / 16$, $\mathrm{fx} / 24$ (timer clock: $\mathrm{fx} / 16$) - No carrier			$\mathrm{fx} / 8, \mathrm{fx} / 12$
	Output start	Synchronized with timer			Not synchronized with timer
Instruction execution time		$8 \mu \mathrm{~s}$ (fx $=1 \mathrm{MHz}$)			$16 \mu \mathrm{~s}(\mathrm{fx}=500 \mathrm{kHz})$
Relative branch instruction		None			Provided
Left shift instruction		None			Provided
"MOV Rn, @R0" instruction		$\mathrm{n}=1$ to F			$\mathrm{n}=0$ to F
Standby mode (HALT instruction)		HALT mode for timer only. STOP mode for only releasing K_{1} (Kıo high-level output or Kıoo high-level output)			HALT/STOP mode set by P1 register value
Relation between HALT instruction execution and status flag (F)		HALT instruction not executed when $\mathrm{F}=1$			HALT instruction executed regardless of status of F
Reset function by charging/ discharging capacitor		None			Provided
POC circuit		Mask option Low level output to $\overline{\text { RESET }}$ pin on detection			Provided (low-voltage detection circuit) Low level output to S-OUT pin on detection
Mask option		POC circuit only (Circuits other than POC circuit are set by software.)			- Pull-down resistor - Variable duty - Hang-up detection
Supply voltage		- $V_{D D}=1.8$ to 3.6 V - $V_{D D}=2.2$ to 3.6 V (with POC circuit)			$\mathrm{V}_{\mathrm{DD}}=2.2$ to 3.6 V
Operating temperature		- $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ - $\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$ (with POC circuit)			$\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}$
Package		-20-pin plastic SOP - 20-pin plastic shrink SOP	- 20-pin plastic		- 20-pin plastic SOP - 20-pin plastic shrink DIP
One-time PROM		μ PD66P04B	μ PD61P34B		μ PD61P24

APPENDIX C. EXAMPLE OF REMOTE-CONTROL TRANSMISSION FORMAT

(in the case of NEC transmission format in command one-shot transmission mode)

Caution When using the NEC transmission format, please apply for a custom code at NEC.
(1) REM output waveform (From <2> on, the output is made only when the key is kept pressed.)

Remark If the key is repeatedly pressed, the power consumption of the infrared light-emitting diode (LED) can be reduced by sending the reader code and the stop bit from the second time.
(2) Enlarged waveform of <1>

REM output

(3) Enlarged waveform of <3>

(4) Enlarged waveform of <2>

REM output

(5) Carrier waveform (Enlarged waveform of each code's high period)

(6) Bit array of each code

Caution To prevent malfunction with other systems when receiving data in the NEC transmission format, not only fully decode (make sure to check $\overline{\text { Data Code as well) the total } 32 \text { bits of the }}$ 16-bit custom codes (Custom Code, Custom Code') and the 16-bit data codes (Data Code,

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vdd or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I. Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. PC/AT and PC DOS are trademarks of IBM Corp.

Abstract

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

