Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT $\mu PD78P083$

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P083 is a member of the μ PD78083 subseries of the 78K/0 series products. It includes an on-chip, 24-Kbyte, one-time PROM or EPROM.

Because this device can be programmed by users, it is ideally suited for applications involving the evaluation of systems in development stages, small-scale production of many different products, and rapid development and time-to-market of a new product.

Caution The μPD78P083DU does not maintain planned reliability when used in your systems' mass-produced products. Please use only experimentally or for evaluation purposes during trial manufacture.

The details of functions are described in the user's manuals. Be sure to read the following manuals before designing.

μPD78083 Subseries User's Manual : IEU-1407 78K/0 Series User's Manual — Instructions : IEU-1372

FEATURES

- Pin-compatible with mask ROM version (except VPP pin)
- Internal PROM: 24 Kbytes Note
 - μPD78P083DU: Reprogrammable (ideally suited for system evaluation)
 - μPD78P083CU, μPD78P083GB: One-time programmable (ideally suited for small-scale production)
- Internal high-speed RAM: 512 bytes Note
- Can be operated in the same supply voltage as the mask ROM version (VDD = 1.8 to 5.5 V)
- Corresponding to QTOP[™] Microcontrollers

Note The internal PROM and internal high-speed RAM capacities can be changed by setting the internal memory size switching register (IMS).

Remark QTOP microcontroller is a general term for microcontrollers which incorporate one-time PROM and are totally supported by NEC's programming service (from programming to marking, screening and verification).

Differs from the mask ROM version in the following points

The same memory mapping as the mask ROM version is enabled by setting the internal memory size switching register (IMS).

In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice.

Document No. U11006EJ1V0DS00 (1st edition) (Previous No. IP-3556) Date Published June 1996 P Printed in Japan *

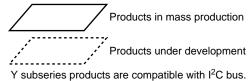
*

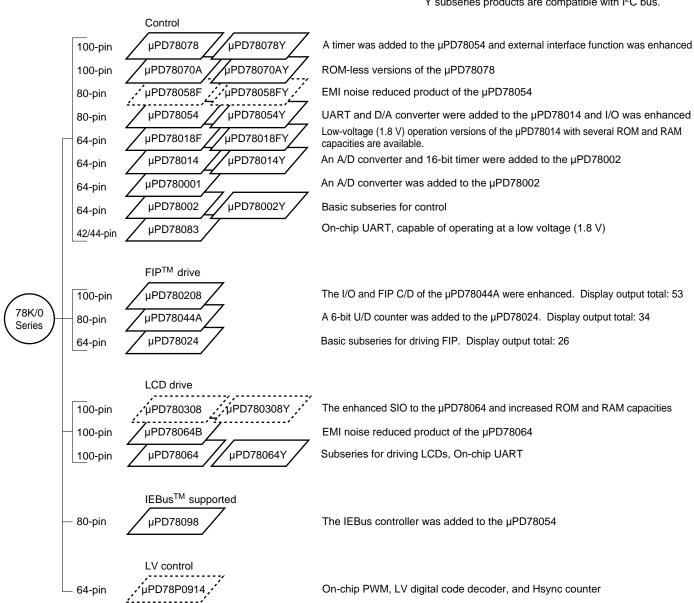
ORDERING INFORMATION

Part Number	Package	Internal ROM
μPD78P083CU	42-pin plastic shrink DIP (600 mil)	One-Time PROM
μPD78P083GB-3B4	44-pin plastic QFP (10 x 10 mm)	One-Time PROM
μPD78P083GB-3BS-MTX	44-pin plastic QFP (10 x 10 mm)	One-Time PROM
μPD78P083DU	42-pin ceramic shrink DIP	EPROM
	(with window) (600 mil)	

Caution μ PD78P083GB has two kinds of package. (Refer to 9. PACKAGE DRAWINGS). Please refer an NEC's sales representative for the available package.

QUALITY GRADE


Part Number	Package	Quality Grades	
μPD78P083CU	42-pin plastic shrink DIP (600 mil)	Standard	
μPD78P083GB-3B4	44-pin plastic QFP (10 x 10 mm)	Standard	
μPD78P083GB-3BS-MTX	44-pin plastic QFP (10 x 10 mm)	Standard	
μPD78P083DU	42-pin ceramic shrink DIP	Not applicable	
	(with window) (600 mil)		


Please refer to "Quality grades on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

78K/0 SERIES DEVELOPMENT

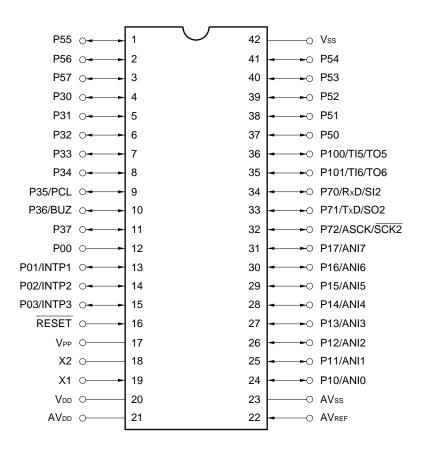
The following shows the 78K/0 series products development. Subseries names are shown inside frames.

The following table shows the differences among subseries functions.

	Function	ROM	Timer				8-bit	8-bit	Serial Interface	I/O	VDD MIN.	External
Part Number		Capacity	8-bit	16-bit	Watch	WDT	A/D	D/A			Value	Expansion
Control	μPD78078	32 K to 60 K	4ch	1ch	1ch	1ch	8ch	2ch	3ch (UART: 1ch)	88	1.8 V	Available
	μPD78070A	-								61	2.7 V	
	μPD78058F	48 K to 60 K	2ch							69		
	μPD78054	16 K to 60 K									2.0 V	
	μPD78018F	8 K to 60 K						_	2ch	53	1.8 V	
	μPD78014	8 K to 32 K									2.7 V	
	μPD780001	8 K		_	_				1ch	39		-
	μPD78002	8 K to 16 K			1ch		_			53		Available
	μPD78083				_		8ch		1ch (UART: 1ch)	33	1.8 V	-
FIP drive	μPD780208	32 K to 60 K	2ch	1ch	1ch	1ch	8ch	-	2ch	74	2.7 V	-
	μPD78044A	16 K to 40 K								68		
	μPD78024	24 K to 32 K								54		
LCD drive	μPD780308	48 K to 60 K	2ch	1ch	1ch	1ch	8ch	-	3ch (UART: 1ch)	57	1.8 V	_
	μPD78064B	32 K							2ch (UART: 1ch)		2.0 V	
	μPD78064	16 K to 32 K										
IEBus	μPD78098	32 K to 60 K	2ch	1ch	1ch	1ch	8ch	2ch	3ch (UART: 1ch)	69	2.7 V	Available
supported												
LV control	μPD78P0914	32 K	6ch	_	-	1ch	8ch	-	2ch	54	4.5 V	Available

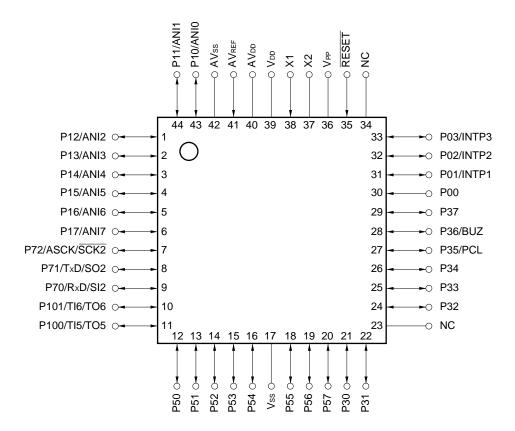
FUNCTION DESCRIPTION

Internal memory	a DDOM: 24 Kbytoo Note				
	PROM: 24 Kbytes Note				
	• RAM				
	Internal high-speed RAM: 512 bytes Note				
Memory space	64 Kbytes				
General register	8 bits x 32 registers (8 bits x 8 registers x 4 banks)				
Instruction cycles	Instruction execution time variable function is integrated.				
	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs (@5.0-MHz operation with main system clock)				
Instruction set	16-bit operation				
	Multiply/divide (8 bits x 8 bits, 16 bits ÷ 8 bits)				
	Bit manipulation (set, reset, test, Boolean operation)				
	BCD adjust, etc.				
I/O ports	Total : 33				
	• CMOS input : 1				
	CMOS input/output : 32				
A/D converter	8-bit resolution x 8 channels				
Serial interface	3-wire serial I/O/UART mode selectable: 1 channel				
Timer	8-bit timer/event counter: 2 channels				
	Watchdog timer: 1 channel				
Timer output	2 pins (8-bit PWM output enable)				
Clock output	19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, and				
	5.0 MHz (@ 5.0-MHz operation with main system clock)				
Buzzer output	1.2 kHz, 2.4 kHz, 4.9 kHz, and 9.8 kHz				
	(@ 5.0-MHz operation with main system clock)				
Vectored Maskable interrupts	Internal : 8 external : 3				
interrupts Non-maskable interrupt	Internal : 1				
Software interrupt	Internal : 1				
Power supply voltage	V _{DD} = 1.8 to 5.5 V				
Operating ambient temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$				
Packages	42-pin plastic shrink DIP (600 mil)				
	44-pin plastic QFP (10 x 10 mm)				
	42-pin ceramic shrink DIP (with window) (600 mil)				


Note Internal PROM and high-speed RAM capacities can be changed by setting the internal memory size switching register (IMS).

PIN CONFIGURATIONS (Top View)

(1) Normal operating mode


- 42-pin plastic shrink DIP (600 mil) μPD78P083CU
- 42-pin ceramic shrink DIP (with window) (600 mil) μPD78P083DU

- Cautions 1. Connect VPP pin directly to Vss.
 - Connect AVDD pin to VDD.
 - 3. Connect AVss pin to Vss.

• 44-pin plastic QFP (10 x 10 mm) μ PD78P083GB-3B4, μ PD78P083GB-3BS-MTX

- Cautions 1. Connect VPP pin directly to Vss.
 - Connect AVDD pin to VDD.
 - 3. Connect AVss pin to Vss.
 - Connect NC pin to Vss for noise protection (It can be left open).

P00 to P03 : Port 0
P10 to P17 : Port 1
P30 to P37 : Port 3
P50 to P57 : Port 5
P70 to P72 : Port 7
P100, P101 : Port 10

INTP1 to INTP3 : Interrupt from Peripherals

TI5, TI6 : Timer Input
TO5, TO6 : Timer Output
SI2 : Serial Input
SO2 : Serial Output
SCK2 : Serial Clock

SCK2 : Serial Clock
RxD : Receive Data
TxD : Transmit Data

ASCK : Asynchronous Serial Clock

PCL : Programmable Clock

BUZ : Buzzer Clock

X1, X2 : Crystal (Main System Clock)

RESET : Reset

ANI0-ANI7 : Analog Input

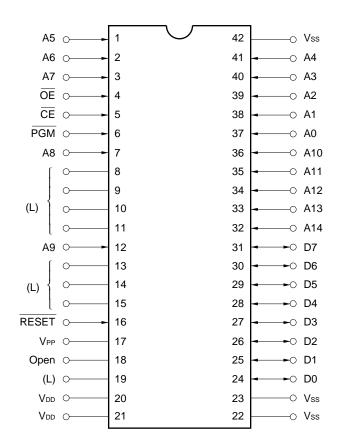
AVDD : Analog Power Supply

AVss : Analog Ground

AVREF : Analog Reference Voltage

V_{DD} : Power Supply

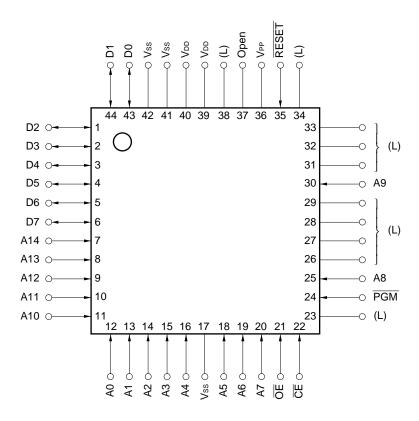
VPP : Programming Power Supply


Vss : Ground

NC : Non-connection

(2) PROM programming mode

- 42-pin plastic shrink DIP (600 mil) μPD78P083CU
- 42-pin ceramic shrink DIP (with window) (600 mil) μPD78P083DU



Cautions 1. (L): Individually connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: Leave open.

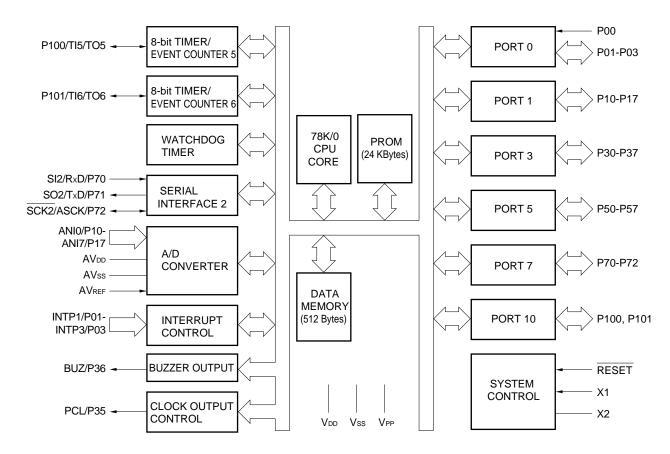
44-pin plastic QFP (10 x 10 mm)
 μPD78P083GB-3B4, μPD78P083GB-3BS-MTX

Cautions 1. (L): Individually connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: Leave open.

A0 to A14 : Address Bus RESET : Reset

D0 to D7 : Data Bus VDD : Power Supply


CE : Chip Enable VPP : Programming Power Supply

OE : Output Enable Vss : Ground

PGM : Program

BLOCK DIAGRAM

CONTENTS

- 1. DIFFERENCES BETWEEN THE μPD78P083 AND MASK ROM VERSIONS ··· 13
- 2. PIN FUNCTIONS ··· 14
 - 2.1 Pins in Normal Operating Mode ··· 14
 - 2.2 Pins in PROM Programming Mode ... 16
 - 2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins --- 16
- 3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS) --- 18
- 4. PROM PROGRAMMING --- 19
 - 4.1 Operating Modes --- 19
 - 4.2 PROM Write Procedure ··· 21
 - 4.3 PROM Read Procedure -- 25
- 5. PROGRAM ERASURE (μPD78P083DU ONLY) ··· 26
- 6. OPAQUE FILM ON ERASURE WINDOW (μPD78P083DU ONLY) ··· 26
- 7. ONE-TIME PROM VERSION SCREENING --- 26
- * 8. ELECTRICAL SPECIFICATIONS --- 27
 - 9. PACKAGE DRAWINGS --- 45
- * 10. RECOMMENDED SOLDERING CONDITIONS --- 49
 - APPENDIX A. DEVELOPMENT TOOLS --- 50
 - APPENDIX B. RELATED DOCUMENTS --- 52

1. DIFFERENCES BETWEEN THE μ PD78P083 AND MASK ROM VERSIONS

The μ PD78P083 is a single-chip microcontroller with an on-chip one-time PROM or with an on-chip EPROM which has program write, erasure and rewrite capability.

Setting the internal memory size switching register (IMS) makes the functions except the PROM specification identical to the mask ROM versions, that is, the μ PD78081 and μ PD78082.

Differences between the $\mu PD78P083$ and mask ROM versions are shown in Table 1-1.

Table 1-1. Differences between the μ PD78P083 and Mask ROM Versions

Parameter	μPD78P083	Mask ROM Versions
ROM type	One-time PROM/EPROM	Mask ROM
ROM capacity	24 Kbytes	μPD78081 : 8 Kbytes
		μPD78082 : 16 Kbytes
Internal high-speed RAM capacity	512 bytes	μPD78081 : 256 bytes
		μPD78082 : 384 bytes
Internal ROM and internal high-speed	Can be changed Note	Can not be changed
RAM capacity change by internal		
memory size switching register		
IC pin	No	Yes
V _{PP} pin	Yes	No
Electrical specifications	Refer to a data sheet of each product	

Note The internal PROM becomes 24 Kbytes and the internal expansion RAM becomes 512 bytes by the RESET input.

2. PIN FUNCTIONS

2.1 Pins in Normal Operating Mode

(1) Port pins

Pin Name	Input/Output	I	unction	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	_
P01	Input/output	4-bit input/output port	Input/output is specifiable	Input	INTP1
P02			bit-wise. When used as the		INTP2
P03			input port, it is possible to		INTP3
			connect a pull-up resistor by		
			software.		
P10-P17	Input/output	Port 1		Input	ANI0-ANI7
		8-bit input/output port			
		Input/output is specifiab	le bit-wise.		
		When used as the inpu	t port, it is possible to connect		
		a pull-up resistor by soft	tware. Note		
P30-P34	Input/output	Port 3		Input	_
P35		8-bit input/output port			PCL
P36		Input/output is specifiab	le bit-wise.		BUZ
P37		When used as the inpu	t port, it is possible to connect		_
		a pull-up resistor by soft	tware.		
P50-P57	Input/output	Port 5		Input	_
		8-bit input/output port			
		Can drive up to seven L	EDs directly.		
		Input/output is specifiab	le bit-wise.		
		When used as the inpu	t port, it is possible to connect		
		a pull-up resistor by soft	tware.		
P70	Input/output	Port 7		Input	SI2/RxD
P71		3-bit input/output port			SO2/TxD
P72		Input/output is specifiab	le bit-wise.		SCK2/ASCK
		When used as the inpu	t port, it is possible to connect		
		a pull-up resistor by soft	a pull-up resistor by software.		
P100	Input/output	Port 10	Port 10		TI5/TO5
P101		2-bit input/output port			TI6/TO6
		Input/output is specifiab			
	When used as the input port, it is possible to conne		t port, it is possible to connect		
		a pull-up resistor by soft	tware.		

Note When P10/ANI0-P17/ANI7 pins are used as the analog inputs for the A/D converter, set the port 1 to the input mode. The on-chip pull-up resistor is automatically disabled.

(2) Non-port pins

Pin Name	Input/Output	Function	After Reset	Alternate Function
INTP1	Input	External interrupt input by which the active edge (rising edge,	Input	P01
INTP2		falling edge, or both rising and falling edges) can be specified.		P02
INTP3				P03
SI2	Input	Serial interface serial data input.	Input	P70/RxD
SO2	Output	Serial interface serial data output.	Input	P71/TxD
SCK2	Input/Output	Serial interface serial clock input/output.	Input	P72/ASCK
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input.	Input	P72/SCK2
TI5	Input	External count clock input to 8-bit timer (TM5).	Input	P100/TO5
TI6		External count clock input to 8-bit timer (TM6).		P101/TO6
TO5	Output	8-bit timer output.	Input	P100/TI5
TO6				P101/TI6
PCL	Output	Clock output. (for main system clock trimming)	Input	P35
BUZ	Output	Buzzer output.	Input	P36
ANI0-ANI7	Input	A/D converter analog input.	Input	P10-P17
AVREF	Input	A/D converter reference voltage input.	_	_
AVDD	_	A/D converter analog power supply. Connected to VDD.	_	_
AVss	_	A/D converter ground potential. Connected to Vss.	ı	_
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	_	_
X2	_		_	_
V _{DD}	_	Positive power supply.	-	_
V _{PP}	_	High-voltage applied during program write/verification.	_	_
		Connected directly to Vss in normal operating mode.		
Vss	_	Ground potential.	-	_
NC	_	Does not internally connected. Connect to Vss.	-	_
		(It can be left open)		

2.2 Pins in PROM Programming Mode

Pin Name	Input/Output	Function
RESET	Input	PROM programming mode setting
		When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the RESET pin,
		this chip is set in the PROM programming mode.
VPP	Input	PROM programming mode setting and high-voltage applied during program write/verification.
A0-A14	Input	Address bus
D0-D7	Input/output	Data bus
CE	Input	PROM enable input/program pulse input
ŌĒ	Input	Read strobe input to PROM
PGM	Input	Program/program inhibit input in PROM programming mode.
V _{DD}	_	Positive power supply
Vss	_	Ground potential

2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins

Types of input/output circuits of the pins and recommeded connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, see Figure 2-1.

Table 2-1. Type of Input/Output Circuit of Each Pin

Pin Name	Input/Output	Input/Output	Recommended Connection for Unused Pins
	Circuit Type		
P00	2	Input	Connect to Vss.
P01/INTP1	8-A	Input/Output	Independently connect to Vss via a resistor.
P02/INTP2			
P03/INTP3			
P10/ANI0-P17/ANI7	11	Input/Output	Independently connect to VDD or Vss via
P30-P32	5-A		a resistor.
P33, P34	8-A		
P35/PCL	5-A		
P36/BUZ			
P37			
P50-P57	5-A		
P70/SI2/RxD	8-A		
P71/SO2/TxD	5-A		
P72/SCK2/ASCK	8-A		
P100/TI5/TO5	8-A		
P101/TI6/TO6			
RESET	2	Input	_
AVREF	_	-	Connect to Vss.
AVDD			Connect to VDD.
AVss			Connect to Vss.
VPP			Connect directly to Vss.
NC			Connect to Vss (can leave open)

Type 2 Type 8-A pull-up enable IN O V_{DD} data--○ IN/OUT output Schmitt-triggered input with hysteresis characteristics disable V_{DD} ↓ Type 5-A Type 11 pull-up enable pull-up enable V_{DD} data -○ IN/OUT dataoutput disable -○ IN/OUT output Comparator disable V_{REF} (threshold voltage) input enable input enable

Figure 2-1. Types of Pin Input/Output Circuits

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this internal memory size switching register (IMS), it is possible to get the same memory mapping as that of the mask ROM versions with a different internal memory (ROM, RAM).

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to 46H.

Figure 3-1. Internal Memory Size Switching Register Format

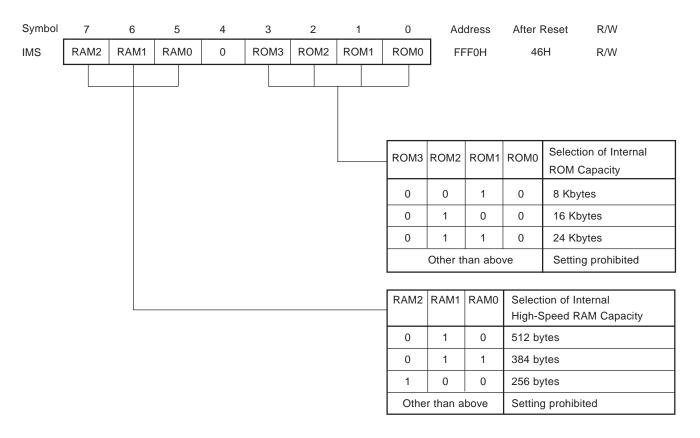


Table 3-1 shows the setting values of IMS which make the memory mapping the same as that of the mask ROM version.

Table 3-1. Internal Memory Size Switching Register Setting Values

Target Mask ROM Versions	IMS Setting Value
μPD78081	82H
μPD78082	64H

4. PROM PROGRAMMING

The μ PD78P083 has an internal 24-Kbyte PROM as a program memory. For programming, set the PROM programming mode with the V_{PP} and $\overline{\text{RESET}}$ pins. For the connection of unused pins, refer to "**PIN CONFIGURATIONS (TOP VIEW)** (2) **PROM programming mode.**"

Caution Programs must be written in addresses 0000H to 5FFFH (The last address 5FFFH must be specified).

They cannot be written by a PROM programmer which cannot specify the write address.

4.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 4-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$, and $\overline{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

CE ŌĒ PGM RESET Pin V_{PP} V_{DD} D0 to D7 Operating Mode Page data latch L +12.5 V +6.5 V Н L Н Data input Н Page write Н L High-impedance Byte write L Н L Data input L Н Program verify L Data output Н Н Program inhibit Х High-impedance х L L +5 V +5 V L Н Read L Data output

L

Н

Н

Х

Х

Х

High-impedance

High-impedance

Table 4-1. Operating Modes of PROM Programming

Output disable

Standby x: L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set.

Therefore, it allows data to be read from any device by controlling the $\overline{\text{OE}}$ pin, if multiple μ PD78P083s are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set.

In this mode, data outputs become high-impedance irrespective of the \overline{OE} status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the $\overline{\text{PGM}}$ pin with $\overline{\text{CE}} = \text{H}$, $\overline{\text{OE}} = \text{H}$. Then, program verification can be performed, if $\overline{\text{CE}} = \text{L}$, $\overline{\text{OE}} = \text{L}$ are set.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, X times ($X \le 10$) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set.

In this mode, check if a write operation is performed correctly after the write.

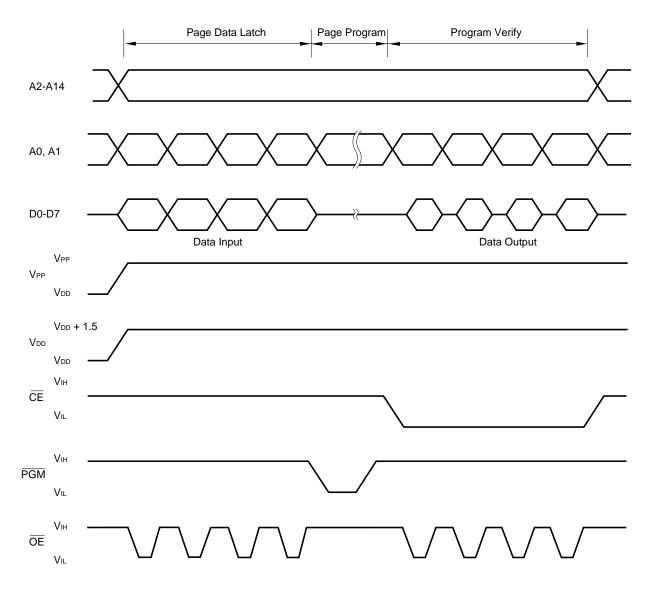
(8) Program inhibit mode

Program inhibit mode is used when the $\overline{\text{OE}}$ pin, VPP pin, and D0-D7 pins of multiple μ PD78P083s are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the $\overline{\text{PGM}}$ pin driven high.

4.2 PROM Write Procedure

Start Address = G $V_{DD} = +6.5 \text{ V}, V_{PP} = +12.5 \text{ V}$ X = 0Latch Address = Address + 1 Latch Address = Address + 1 Latch Address = Address + 1 Address = Address + 1 Latch No X = X + 1Yes X = 10 ? 0.1-ms program pulse Fail Verify 4 bytes Pass Address = N ? Yes V_{DD} = 4.5 to 5.5 V, V_{PP} = V_{DD} Pass Fail Verify all bytes All Pass Write end Defective product


Figure 4-1. Page Program Mode Flow Chart

G = Start address

N = Program last address

Figure 4-2. Page Program Mode Timing

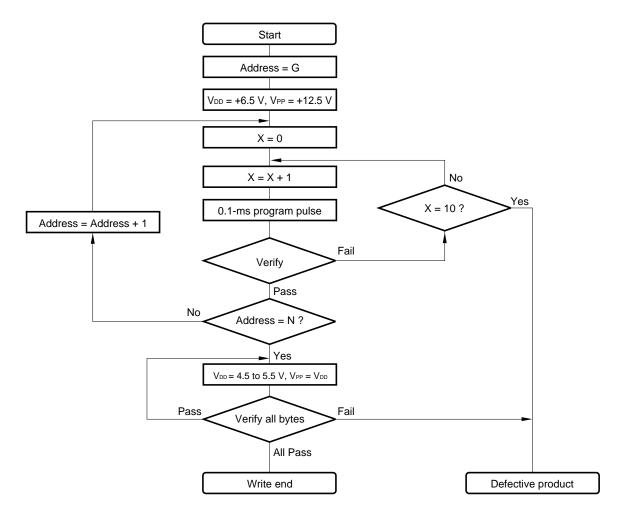


Figure 4-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

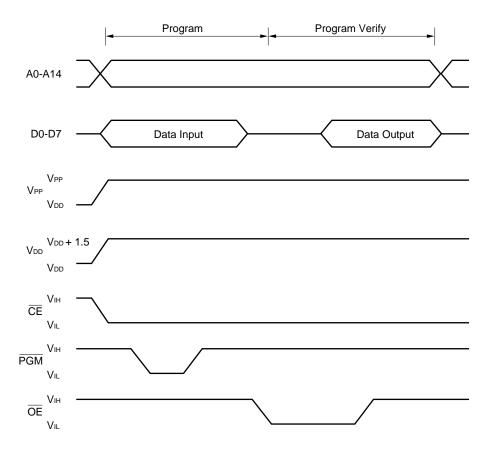
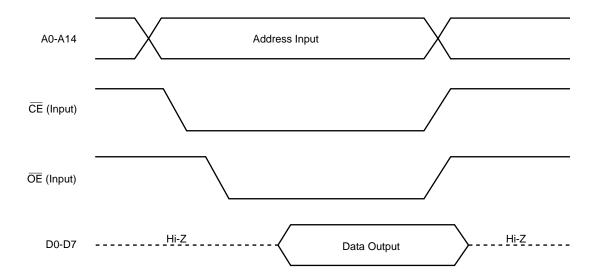


Figure 4-4. Byte Program Mode Timing

- Cautions 1. VDD should be applied before VPP and removed after VPP.
 - 2. VPP must not exceed +13.5 V including overshoot.
 - 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to VPP.


4.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0-D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATIONS (TOP VIEW) (2) PROM programming mode".
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0-A16 pins.
- (4) Read mode
- (5) Output data to D0-D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 4-5.

Figure 4-5. PROM Read Timings

* 5. PROGRAM ERASURE (μPD78P083DU ONLY)

The μPD78P083DU is capable of erasing (FFH) the data written in a program memory and rewriting.

To erase the programmed data, expose the erasure window to light having a wavelength shorter than about 400 nm. Normally, irradiate ultraviolet rays of 254-nm wavelength. The amount of exposure required to completely erase the programmed data is as follows:

• UV intensity x erasing time : 30 W•s/cm² or more

• Erasure time: 40 min. or more (When a UV lamp of 12,000 μW/cm² is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, soiled erasure window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasure window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

6. OPAQUE FILM ON ERASURE WINDOW (μPD78P083DU ONLY)

To protect from unintentional erasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuit other than EPROM from misoperating by rays, cover the erasure window with an opaque film when EPROM contents erasure is not performed.

7. ONE-TIME PROM VERSION SCREENING

The one-time PROM version (µPD78P083CU, 78P083GB-3B4, 78P083GB-3BS-MTX) cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time
125°C	24 hours

* NEC offers for an additional fee one-time PROM writing to marking, screening, and verify for products designated as "QTOP Microcontroller". Please contact an NEC sales representative for details.

8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings $(TA = 25^{\circ}C)$

Parameter	Symbol	Test Conditions			Ratings	Unit		
Supply voltage	V _{DD}				-0.3 to +7.0	V		
	VPP				-0.3 to +13.5	V		
	AVDD			-0.3 to V _{DD} + 0.3	V			
	AVREF				-0.3 to $V_{DD} + 0.3$	V		
	AVss				-0.3 to +0.3	V		
Input voltage	VII	-		-0.3 to V _{DD} + 0.3	V			
	Vı2	A9	PROM prog	ramming mode	-0.3 to +13.5	V		
Output voltage	Vo		•		-0.3 to V _{DD} + 0.3	V		
Analog input voltage	Van	P10-P17	Analog inp	ut pins	AVss - 0.3 to AVREF + 0.3	V		
Output current, high	Іон	Per pin Total for P10-P17, P50-P54, P70-P72,		-10	mA			
				72,	-15	mA		
		P100, P101						
		Total for P01-P03, P30-P37, P55-P57			-15	mA		
Output current, low	IOL Note	Per pin		Peak value	30	mA		
				r.m.s. value	15	mA		
		Total for P50-P54		Peak value	100	mA		
					70	mA		
		Total for P55-P57 Peak value			Total for P55-P57 Peak value 100		100	mA
				r.m.s. value	70	mA		
		Total for P10-P17, P70-P	72, P100,	Peak value	50	mA		
		P101		r.m.s. value	20	mA		
		Total for P01-P03, P30-	-P37	Peak value	50	mA		
				r.m.s. value	20	mA		
Operating ambient temperature	TA				-40 to +85	°C		
Storage temperature	Tstg				-65 to +150	°C		

Note The r.m.s. value should be calculated as follows: [r.m.s. value] = [Peak value] $x \sqrt{\text{Duty}}$

Caution If the absolute maximum rating of even one of the above parameters is exceeded, the quality of the product may be degraded. The absolute maximum ratings are therefore the rated values that may, if exceeded, physically damage the product. Be sure to use the product with all the absolute maximum ratings observed.

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.

*

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz, Unmeasured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz,	P01-P03, P10-P17, P30-P37,			15	pF
		Unmeasured pins	P50-P57, P70-P72, P100,				
		returned to 0 V.	P101				

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.

Main System Clock Oscillator Characteristics ($TA = -40 \text{ to } +85^{\circ}\text{C}$, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	VPP X2 X1 C2= C1 =	Oscillation frequency (fx) Note 1	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
		Oscillation stabilization time Note 2	After V _{DD} came to MIN. of oscillation voltage range			4	ms
Crystal resonator	VPP X2 X1	Oscillation frequency (fx) Note 1		1.0		5.0	MHz
		Oscillation stabilization	V _{DD} = 4.5 to 5.5 V			10	ms
	1777	time Note 2				30	
External clock	X2 X1	X1 input frequency (fx) Note 1		1.0		5.0	MHz
	μPD74HCU04 Λ	X1 input high- and		85		500	ns
		low-level widths (txH, txL)					

- Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
 - 2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.

Caution When using the oscillation circuit of the main system clock, wire the portion enclosed in broken lines in the figures as follows to avoid adverse influences on the wiring capacitance:

- Keep the wiring length as short as possible.
- · Do not cross the wiring over other signal lines.
- Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
- · Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- · Do not extract signals from the oscillation circuit.

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10-P17, P30-P32, P35-P37, P50-P57,	V _{DD} = 2.7 to 5.5 V	0.7Vdd		V _{DD}	V
		P71		0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00-P03, P33, P34, P70, P72, P100, P101,	V _{DD} = 2.7 to 5.5 V	0.8Vpd		V _{DD}	V
		RESET		0.85Vpd		V _{DD}	V
	VIH3	X1, X2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	V _{DD} -0.5		V _{DD}	V
				V _{DD} -0.2		V _{DD}	V
Input voltage, low	VIL1	P10-P17, P30-P32, P35-P37, P50-P57,	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
		P71		0		0.2V _{DD}	V
	V _{IL2}	P00-P03, P33, P34, P70, P72, P100,	V _{DD} = 2.7 to 5.5 V	0		0.2V _{DD}	V
		P101, RESET		0		0.15V _{DD}	V
	VIL3	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
Output voltage, high	Vон	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ IoH} = -1 \text{ mA}$		V _{DD} -1.0			V
		Іон = -100 μА		V _{DD} -0.5			V
Output voltage, low	Vol	P50-P57	V _{DD} = 2.0 to 4.5 V,			0.8	V
			$I_{OL} = 10 \text{ mA}$ $V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$		0.4	2.0	V
			IoL = 15 mA		0.4	2.0	V
		P01-P03, P10-P17,	V _{DD} = 4.5 to 5.5 V,			0.4	V
		P30-P37, P70-P72,	IoL = 1.6 mA			0.4	v
		P100, P101	IoL = 400 μA			0.5	V
Input-leak current, high	ILIH1	VIN = VDD	P00-P03, P10-P17,			3	<u>.</u> μΑ
pat ioan our.om, ingi	12	·	P30-P37, P50-P57,				μ
			P70-P72, P100,				
			P101, RESET				
	I _{LIH2}		X1, X2			20	μΑ
Input-leak current, low	ILIL1	Vin = 0 V	P00-P03, P10-P17,			-3	<u>.</u> μΑ
•			P30-P37, P50-P57,				·
			P70-P72, P100,				
			P101, RESET				
	ILIL2		X1, X2			-20	μΑ
Output leak current, high	Ісон	Vout = Vdd	<u>I</u>			3	<u>.</u> μΑ
Output leak current, low	ILOL	Vout = 0 V				-3	<u>.</u> μΑ
Software pull-up resistor	R	Vin = 0 V	P01-P03, P10-P17,	15	40	90	kΩ
			P30-P37, P50-P57,				
			P70-P72, P100,				
			P101			1	

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	5.0-MHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10\%$ Note 4		5.4	16.2	mA
		oscillation operating	$V_{DD} = 3.0 \text{ V} \pm 10\%$ Note 5		0.8	2.4	mA
		mode (fxx = 2.5 MHz) Note 2	$V_{DD} = 2.0 \text{ V} \pm 10\%$ Note 5		0.45	1.35	mA
		5.0-MHz crystal oscil-	$V_{DD} = 5.0 \text{ V} \pm 10\%$ Note 4		9.5	28.5	mA
		lation operating mode	$V_{DD} = 3.0 \text{ V} \pm 10\%$ Note 5		1.0	3.0	mA
		$(fxx = 5.0 \text{ MHz})^{\text{Note 3}}$					
	I _{DD2}	5.0-MHz crystal oscil-	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1.4	4.2	mA
		lation HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10\%$		0.5	1.5	mA
		(fxx = 2.5 MHz) Note 2	V _{DD} = 2.0 V ± 10%		280	840	μΑ
		5.0-MHz crystal oscil-	$V_{DD} = 5.0 \text{ V} \pm 10\%$		1.6	4.8	mA
		lation HALT mode	V _{DD} = 3.0 V ± 10%		0.65	1.95	mA
		(fxx = 5.0 MHz) Note 3					
	I _{DD3}	STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$		0.1	30	μΑ
			$V_{DD} = 3.0 \text{ V} \pm 10\%$		0.05	10	μΑ
			$V_{DD} = 2.0 \text{ V} \pm 10\%$		0.05	10	μΑ

Notes 1. Not including AVREF, AVDD currents or port currents (including current flowing into internal pull-up resistors).

- **2.** fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H).
- **3.** fxx = fx operation (when oscillation mode selection register (OSMS) is set to 01H).
- 4. High-speed mode operation (when processor clock control register (PCC) is set to 00H).
- 5. Low-speed mode operation (when processor clock control register (PCC) is set to 04H).

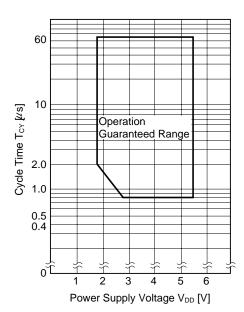
Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

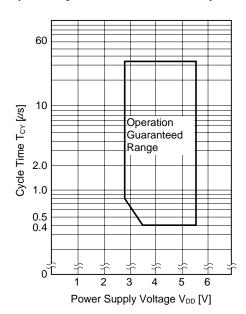
AC Characteristics

(1) **Basic Operation** (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test	t Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	fxx = fx/2 Note1	V _{DD} = 2.7 to 5.5 V	0.8		64	μs
(minimum instruction execution				2.0		64	μs
time)		$fxx = fx^{Note2}$	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.4		32	μs
			2.7 V ≤ V _{DD} < 3.5 V	0.8		32	μs
TI5, TI6	f⊤ı	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$		0		4	MHz
input frequency				0		275	kHz
TI5, TI6 input high-/	tтıн,	V _{DD} = 4.5 to 5.5 V		100			ns
low-level widths	t⊤ı∟			1.8			μs
Interrupt input high-/	tinth,	V _{DD} = 2.7 to 5.5 V		10			μs
low-level widths	tintl			20			μs
RESET low-level width	trsl	V _{DD} = 2.7 to 5.5 V		10			μs
				20			μs


Notes 1. When oscillation mode selection register (OSMS) is set to 00H.

2. When OSMS is set to 01H.


Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

Tcy vs V_{DD} (Main System Clock $f_{xx} = f_x/2$ Operation)

Tcy vs VDD
(Main System Clock fxx = fx Operation)

- (2) **Serial Interface** $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = 1.8 \text{ to } 5.5 \text{ V})$
 - (a) 3-wire serial I/O mode (SCK2 ··· internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcY1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK2 high-/low-level width	t кн1,	V _{DD} = 4.5 to 5.5 V	tксү1/2-50			ns
	t _{KL1}		tkcy1/2-100			ns
SI2 setup time	tsik1	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK2 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI2 hold time	t _{KSI1}		400			ns
(from SCK2 ↑)						
$\overline{SCK2}\downarrow \to SO2$	tkso1	C = 100 pF ^{Note}			300	ns
output delay time						

Note C is the $\overline{\text{SCK2}}$, SO2 output line load capacitance.

(b) 3-wire serial I/O mode (SCK2 ··· external clock input)

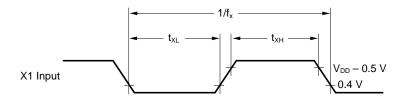
Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tKCY2	4.5 V ≤ V _{DD} ≤ 5.5 \	4.5 V ≤ V _{DD} ≤ 5.5 V				ns
		2.7 V ≤ V _{DD} < 4.5 \	/	1600			ns
		2.0 V ≤ V _{DD} < 2.7 \	/	3200			ns
				4800			ns
SCK2 high-/low-level width	t кн2,	4.5 V ≤ V _{DD} ≤ 5.5 \	/	400			ns
	t _{KL2}	2.7 V ≤ V _{DD} < 4.5 \	/	800			ns
		2.0 V ≤ V _{DD} < 2.7 \	/	1600			ns
				2400			ns
SI2 setup time	tsik2	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK2 ↑)				150			ns
SI2 hold time	t _{KSI2}			400			ns
(from SCK2 ↑)							
$\overline{SCK2} \downarrow \to SO2$	t KSO2	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK2 rise, fall time	t _{R2} ,					1000	ns
	t _{F2}						

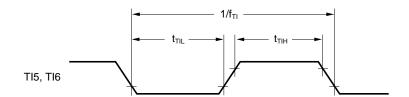
Note C is the SO2 output line load capacitance.

(c) UART mode (Dedicated baud rate generator output)

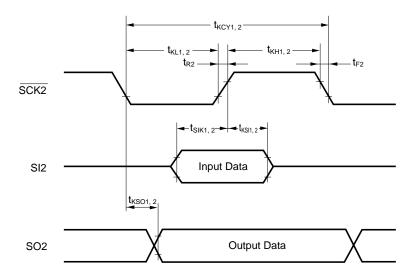
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		4.5 V ≤ V _{DD} ≤ 5.5 V			78125	bps
		2.7 V ≤ V _{DD} < 4.5 V			39063	bps
		2.0 V ≤ V _{DD} < 2.7 V			19531	bps
					9766	bps

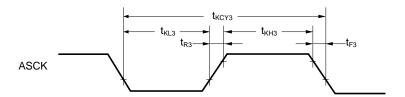
(d) UART mode (External clock input)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
ASCK high-/low-level width	t кнз,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	tкLз	2.7 V ≤ V _{DD} < 4.5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7 V	1600			ns
			2400			ns
Transfer rate		4.5 V ≤ V _{DD} ≤ 5.5 V			39063	bps
		2.7 V ≤ V _{DD} < 4.5 V			19531	bps
		2.0 V ≤ V _{DD} < 2.7 V			9766	bps
					6510	bps
ASCK rise, fall time	t _{R3} ,				1000	ns
	t _{F3}					


AC Timing Test Point (Excluding X1 Input)

Clock Timing


TI Timing



Serial Transfer Timing

3-wire serial I/O mode:

UART mode (external clock input):

A/D Converter Characteristics ($TA = -40 \text{ to } +85^{\circ}\text{C}$, AVDD = VDD = 2.7 to 5.5 V, AVSS = VSS = 0 V)

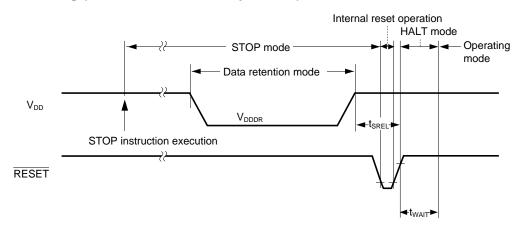
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error Note		2.7 V ≤ AV _{REF} ≤ AV _{DD}			1.4	%
Conversion time	tconv		19.1		200	μs
Sampling time	tsamp		12/f _{xx}			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		2.7		AV _{DD}	V
AVREF-AVss resistance	RAIREF		4	14		kΩ

Note Excluding quantization error ($\pm 1/2$ LSB). Shown as a percentage of the full scale value.

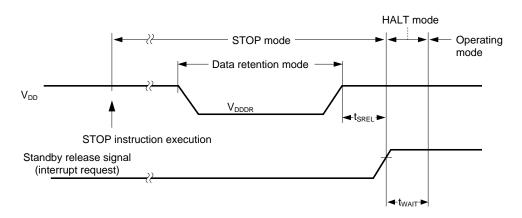
Remark f_{xx} : Main system clock frequency (f_x or $f_x/2$)

fx: Main system clock oscillation frequency

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

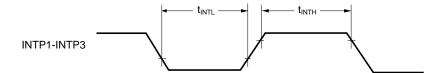

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Data retention supply current	IDDDR	VDDDR = 1.8 V		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization wait	twait	Release by RESET		217/fx		ms
time		Release by interrupt		Note		ms

Note $2^{12}/f_{xx}$ or $2^{14}/f_{xx}$ - $2^{17}/f_{xx}$ can be selected by bit 0-bit 2 (OSTS0-OSTS2) of oscillation stabilization time selection register (OSTS).

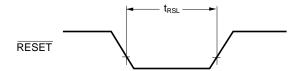

Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

Data Retention Timing (STOP mode released by RESET)



Data Retention Timing (Standby release signal: STOP mode released by interrupt signal)



Interrupt Input Timing

RESET Input Timing

PROM Programming Characteristics

DC Characteristics

(1) **PROM Write Mode** (TA = $25 \pm 5^{\circ}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	VIH		0.7V _{DD}		VDD	V
Input voltage, low	VIL	VIL		0		0.3Vpd	V
Output voltage, high	Vон	Vон	lон = −1 mA	V _{DD} - 1.0			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	V _{PP}		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	Ірр	IPP	PGM = VIL			50	mA
V _{DD} supply current	Idd	Icc				50	mA

(2) **PROM Read Mode** (TA = $25 \pm 5^{\circ}$ C, VDD = 5.0 ± 0.5 V, VPP = VDD ± 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH	VIH		0.7V _{DD}		VDD	V
Input voltage, low	VIL	VIL		0		0.3Vpd	V
Output voltage, high	Vон1	V _{OH1}	lон = −1 mA	V _{DD} - 1.0			V
	V _{OH2}	V _{OH2}	Іон = -100 μА	V _{DD} - 0.5			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	Iμ	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	ILO	ILO	$0 \le V_{OUT} \le V_{DD}, \overline{OE} = V_{IH}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	VPP		VDD - 0.6	V _{DD}	VDD + 0.6	V
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	V
VPP supply current	IPP	IPP	VPP = VDD			100	μΑ
VDD supply current	IDD	Icca1	CE = VIL, VIN = VIH			50	mA

Note Corresponding $\mu PD27C1001A$ symbol.

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (TA = $25 \pm 5^{\circ}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\sf OE}\ \downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to OE ↓)	tces	tces		2			μs
Input data setup time (to $\overline{OE}\ \downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE} \uparrow$)	tан	tан		2			μs
	t ahl	tahl		2			μs
	tahv	tahv		0			μs
Input data hold time (from OE ↑)	tон	tон		2			μs
$\overline{OE} \uparrow \to Data$ output float	tor	tof		0		250	ns
delay time							
V_{PP} setup time (to $\overline{OE} \downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE} \downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
$\overline{OE} \downarrow \to Valid$ data delay time	toe	toe				1	μs
OE pulse width during data	tuw	tuw		1			μs
latching							
PGM setup time	t PGMS	t PGMS		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	tоен		2			μs

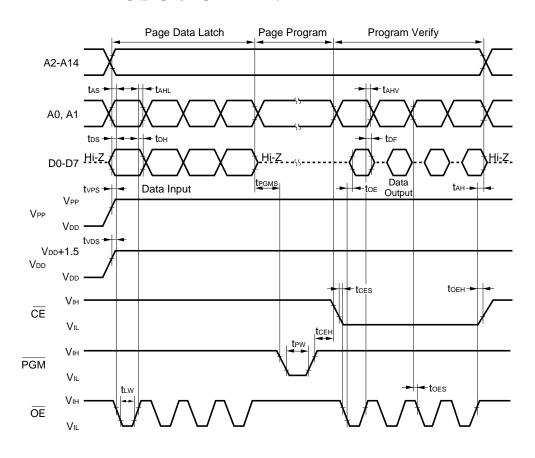
(b) Byte program mode (T_A = 25 \pm 5°C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{PGM}\ \downarrow$)	tas	tas		2			μs
OE set time	toes	toes		2			μs
CE setup time (to PGM ↓)	tces	tces		2			μs
Input data setup time (to $\overline{\text{PGM}} \downarrow$)	tos	tos		2			μs
Address hold time (from OE ↑)	t AH	tан		2			μs
Input data hold time	tон	tон		2			μs
(from PGM ↑)							
$\overline{OE} \uparrow \to Data$ output float	tor	tof		0		250	ns
delay time							
V _{PP} setup time (to $\overline{\text{PGM}}$ ↓)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{\text{PGM}} \downarrow$)	tvps	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
$\overline{OE} \downarrow \to Valid$ data delay time	toe	toe				1	μs
OE hold time	tоен	_		2			μs

Note Corresponding $\mu PD27C1001A$ symbol.

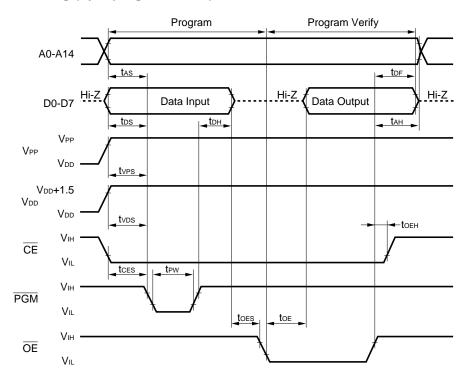
(2) **PROM Read Mode** $(T_A = 25 \pm 5^{\circ}C, V_{DD} = 5.0 \pm 0.5 \text{ V}, V_{PP} = V_{DD} \pm 0.6 \text{ V})$

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address → Data output	tacc	tacc	CE = OE = VIL			800	ns
delay time							
$\overline{CE} \downarrow \to Data$ output delay time	tce	tce	OE = VIL			800	ns
$\overline{OE} \downarrow \to Data$ output delay time	toe	toe	CE = VIL			200	ns
$\overline{OE} \uparrow \to Data$ output float	tor	tof	CE = VIL	0		60	ns
delay time							
Address → Data hold time	tон	tон	CE = OE = VIL	0			ns

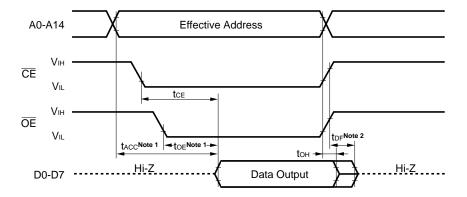

Note Corresponding $\mu PD27C1001A$ symbol.

(3) PROM Programming Mode $(T_A = 25^{\circ}C, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode	tsma		10			μs
setup time						



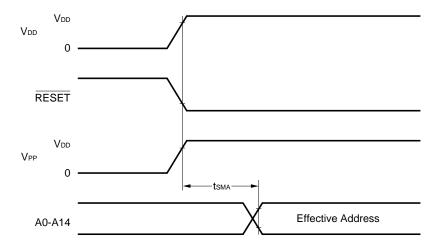
PROM Write Mode Timing (page program mode)


PROM Write Mode Timing (byte program mode)

Cautions 1. VDD should be applied before VPP, and removed after VPP.

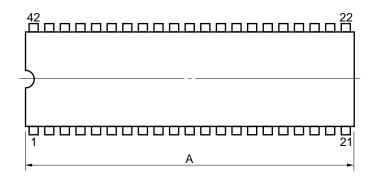
- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Reliability may be adversely affected if removal/reinsertion is performed while + 12.5 V is being applied to VPP.

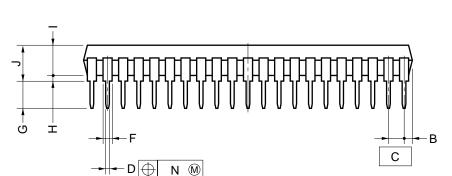
PROM Read Mode Timing

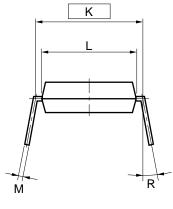


Notes 1. If you want to read within the range of tacc, make the $\overline{\text{OE}}$ input delay time from the fall of $\overline{\text{CE}}$ a maximum of tacctoe.

2. top is the time from when either \overline{OE} or \overline{CE} first reaches ViH.


PROM Programming Mode Setting Timing





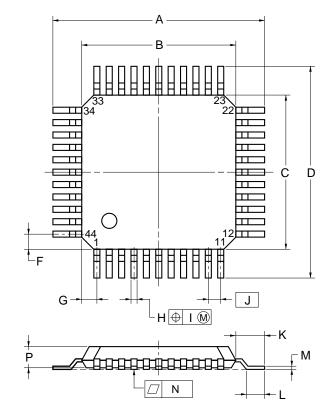
9. PACKAGE DRAWINGS

42PIN PLASTIC SHRINK DIP (600 mil)

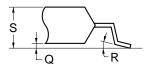
NOTES

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	39.13 MAX.	1.541 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	0.020+0.004
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
ı	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
М	0.25 ^{+0.10} _{-0.05}	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°


P42C-70-600A-1

Remark The shape and material of ES versions are the same as those of mass-produced versions.



 $\mu \textbf{PD78P083GB-3B4}$

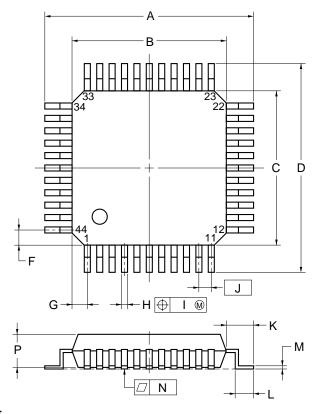
44 PIN PLASTIC QFP (□10)

detail of lead end

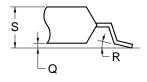
NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	13.6±0.4	$0.535^{+0.017}_{-0.016}$
В	10.0±0.2	$0.394^{+0.008}_{-0.009}$
С	10.0±0.2	$0.394^{+0.008}_{-0.009}$
D	13.6±0.4	0.535 ^{+0.017} _{-0.016}
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	0.014+0.004
ı	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	0.031+0.009
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
P	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.


P44GB-80-3B4-3

Remark The shape and material of ES versions are the same as those of mass-produced versions.

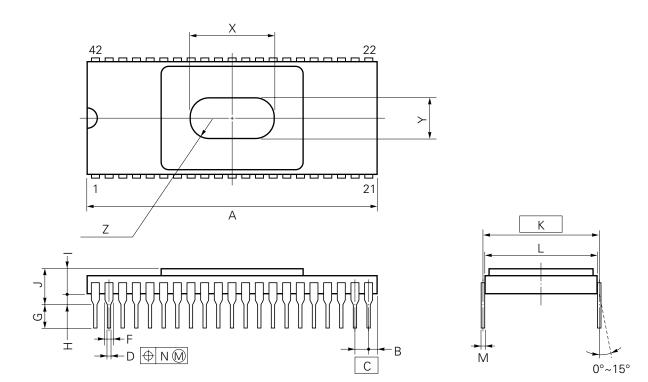


$\mu \textbf{PD78P083GB-3BS-MTX}$

44 PIN PLASTIC QFP (□10)

detail of lead end

NOTE


Each lead centerline is located within 0.16 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	13.2±0.2	0.520+0.008
В	10.0±0.2	0.394+0.008
С	10.0±0.2	0.394+0.008
D	13.2±0.2	0.520+0.008
F	1.0	0.039
G	1.0	0.039
Н	0.37 +0.08 -0.07	0.015+0.003
I	0.16	0.007
J	0.8 (T.P.)	0.031 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031 +0.009 -0.008
М	0.17 ^{+0.06} _{-0.05}	$0.007^{+0.002}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7°
S	3.0 MAX.	0.119 MAX.
	•	S44GB-80-3BS

Remark The shape and material of ES versions are the same as those of mass-produced versions.

42PIN CERAMIC SHRINK DIP (WINDOW) (600 mil)

NOTES

- 1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

P42DW-70-600A **ITEM MILLIMETERS INCHES** Α 38.25 MAX. 1.506 MAX. В 1.345 MAX. 0.053 MAX. С 1.778 (T.P.) 0.07 (T.P.) D 0.46 ± 0.05 0.018±0.002 F 0.85 MIN. 0.033 MIN. G 3.5 ± 0.3 0.138±0.012 Н 1.02 MIN. 0.040 MIN. 3.026 0.119 J 5.282 MAX. 0.208 MAX. Κ 15.24 (T.P.) 0.600 (T.P.) L 0.590 14.99 $0.010^{+0.002}_{-0.003}$ Μ 0.25 ± 0.05 Ν 0.25 0.01 Χ 12.0 0.472 Υ 6.0 0.236 4-R3.0 4-R0.118 Ζ

10. RECOMMENDED SOLDERING CONDITIONS

*

It is recommended that the µPD78P083 be soldered under the following conditions.

For details on the recommended soldering conditions, refer to information document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

Table 10-1. Soldering Conditions for Surface Mount Types

 $\mu PD78P083GB\text{-}3B4$: 44-pin plastic QFP (10 x 10 mm) $\mu PD78P083GB\text{-}3BS\text{-}MTX$: 44-pin plastic QFP (10 x 10 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or	IR35-00-2
	less (at 210°C or higher), Number of reflow processes: 2 or less	
	< Cautions >	
	(1) Wait for the device temperature to return to normal after the	
	first reflow before starting the second reflow.	
	(2) Do not perform flux cleaning with water after the first reflow.	
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or	VP15-00-2
	less (at 200°C or higher), Number of reflow processes: 2 or less	
	< Cautions >	
	(1) Wait for the device temperature to return to normal after the	
	first reflow before starting the second reflow.	
	(2) Do not perform flux cleaning with water after the first reflow.	
Wave soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or	WS60-00-1
	less, Number of flow processes: 1,	
	Preheating temperature: 120°C max. (package surface	
	temperature)	
Partial heating	Pin temperature: 300°C or below,	_
	Flow time: 3 seconds or less (per pin row)	

Caution Do not use different soldering methods together (except for partial heating method).

Table 10-2. Soldering Condition for Hole-Through Types

μPD78P083CU : 42-pin plastic shrink DIP (600 mil)

μPD78P083DU: 42-pin ceramic shrink DIP (with window) (600 mil)

Soldering Method	Soldering Conditions	
Wave Soldering (only pins)	Solder temperature: 260°C or below, Flow time: 10 seconds or less	
Partial heating	Pin temperature: 300°C or below, Flow time: 3 seconds or less (per pin)	

Caution Apply wave soldering only to the pins and be careful so as not to bring solder into direct contact with the package.

APPENDIX A. DEVELOPMENT TOOLS *

The following development tools are available to support development of systems using the μ PD78P083.

Language Processing Software

RA78K/0 Notes 1, 2, 3, 4	Assembler package common to the 78K/0 series
CC78K/0 Notes 1, 2, 3, 4	C compiler package common to the 78K/0 series
DF78083 Notes 1, 2, 3, 4	Device file used for the μPD78083 subseries
CC78K/0-L Notes 1, 2, 3, 4	C compiler library source file common to the 78K/0 series

PROM Writing Tools

PG-1500	PROM programmer
PA-78P083CU	Programmer adapter connected to the PG-1500
PA-78P083GB	
PG-1500 Controller Notes 1, 2	Control program for the PG-1500

Debugging Tools

IE-78000-R	In-circuit emulator common to the 78K/0 series
IE-78000-R-A Note 8	In-circuit emulator common to the 78K/0 series (for integrated debugger)
IE-78000-R-BK	Break board common to the 78K/0 series
IE-78078-R-EM	Emulation board common to the μPD78078 subseries
EP-78083CU-R	Emulation probe for the μPD78083 subseries
EP-78083GB-R	
EV-9200G-44	Socket mounted on the target system board prepared for 44-pin plastic QFP
SM78K0 Notes 5, 6, 7	System simulator common to the 78K/0 series
ID78K0 Notes 4, 5, 6, 7, 8	Integrated debugger for IE-78000-R-A
SD78K/0 Notes 1, 2	Screen debugger for the IE-78000-R
DF78083 Notes 1, 2, 5, 6, 7	Device file used for the μPD78083 subseries

Notes 1. Based on PC-9800 series (MS-DOS™)

- 2. Based on IBM PC/AT™ and its compatibles (PC DOS™/IBM DOS™/MS-DOS)
- 3. Based on HP9000 series 300™ (HP-UX™)
- 4. Based on HP9000 series 700™ (HP-UX), SPARCstation™ (SunOS™), and EWS4800 series (EWS-UX/V)
- 5. Based on PC-9800 series (MS-DOS + Windows™)
- **6.** IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows)
- **7.** Based on NEWS[™] (NEWS-OS[™])
- 8. Under development

- Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on the third party development
 - 2. Use the RA78K/0, CC78K/0, SM78K0, ID78K0, and SD78K/0 in combination with the DF78083.

Fuzzy Inference Development Support System

FE9000 Note 1/FE9200 Note 2	Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 3	Translator
FI78K0 Notes 1, 3	Fuzzy inference module
FD78K0 Notes 1, 3	Fuzzy inference debugger

Notes 1. Based on PC-9800 series (MS-DOS)

- 2. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS+Windows)
- 3. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS)

Remark Please refer to the **78K/0 Series Selection Guide (U11126E)** for information on the third party development tools.

* APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document Name		Document No.	
		Japanese	English
μPD78083 Subseries User's Manual		IEU-886	IEU-1407
78K/0 Series User's Manual—Instructions		IEU-849	IEU-1372
78K/0 Series Instruction Table		U10903J	_
78K/0 Series Instruction Set		U10904J	_
μPD78083 Subseries Special Function Register Table		IEM-5599	_
78K/0 Series Application Note	Basic (III)	IEA-767	U10182E

Documents Related to Development Tools (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler Application Note	Programming	EEA-618	EEA-1208
	know-how		
CC78K Series Library Source File		EEU-777	_
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based	PG-1500 Controller IBM PC Series (PC DOS) Based		U10540E
IE-78000-R		EEU-810	EEU-1398
IE-78000-R-A	IE-78000-R-A		U10057E
IE-78000-R-BK	IE-78000-R-BK		EEU-1427
IE-78078-R-EM		U10775J	EEU-1504
EP-78083	EP-78083		EEU-1529
SM78K0 System Simulator	Reference	EEU-5002	U10181E
SM78K Series System Simulator	Third party's user	U10092J	U10092E
	open interface		
	specifications		
SD78K/0 Screen Debugger	Introduction	EEU-852	_
PC-9800 Series (MS-DOS) Based	Reference	U10952J	_
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	EEU-993	EEU-1413

Caution The contents of the documents listed above are subject to change without prior notice. Make sure to use the latest edition when starting design.

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series OS MX78K0	Basic	EEU-5010	_
Fuzzy Knowledge Data Creation Tool		EEU-829	EEU-1438
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development Support System Translator		EEU-862	EEU-1444
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System Fuzzy In	ference Debugger	EEU-921	EEU-1458

Other Documents

Document Name Document N		nt No.
	Japanese	English
Semiconductor Device Package Manual	IEI-635	IEI-1213
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	IEI-1201
Guide to Quality Assurance for Semicoductor Devices	MEI-603	MEI-1202
Microcontroller-Related Product Guide - Third Party Products -	MEI-604	_

Caution The contents of the documents listed above are subject to change without prior notice. Be sure to use the latest edition when starting design.

NEC μ PD78P083

[MEMO]

NOTES FOR CMOS DEVICES -

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP, IEBus, and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are trademarks of Microsoft Corporation.

IBM DOS, PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representive.

License not needed : $\mu PD78P083DU$ The customer must judge the need for license

: μPD78P083CU, 78P083GB-3B4, 78P083GB-3BS-MTX

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.