

MOS INTEGRATED CIRCUIT μ PD784218, 784218Y

16-/8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD784218 is a member of the μ PD784218 Subseries of the 78K/IV Series. In addition to a high-speed and high-performance CPU, the μ PD784218 incorporates a variety of peripheral hardware such as ROM, RAM, I/O ports, 8-bit resolution A/D and D/A converters, timers, serial interfaces, real-time output ports, and an interrupt function.

The μ PD784218YNote is the μ PD784218 Subseries with a multi-master supporting I²C bus interface added.

Flash memory versions, the μ PD78F4218 and 78F4218Y, which can operate in the same voltage range as the mask ROM versions, and various development tools are also available.

Note Under development

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD784218, 784218Y Subseries User's Manual Hardware: U12970E 78K/IV Series User's Manual Instructions: U10905E

FEATURES

- On-chip ROM correction function
- Inherits peripheral functions of μPD78078Y Subseries
- Minimum instruction execution time

160 ns

(@ fxx = 12.5 MHz operation with main system clock) 61 μ s

(@ fxT = 32.768 kHz operation with subsystem clock)

- · Internal high-capacity memory
 - · ROM: 256 KB
 - · RAM: 12,800 bytes
- I/O ports: 86
- Timer/counters: 16-bit timer/event counter × 1 unit
 8-bit timer/event counter × 6 units
- Serial interfaces: 3 channels
 UART/IOE (3-wire serial I/O): 2 channels
 CSI (3-wire serial I/O, multi-master supporting I²C
 bus^{Note}): 1 channel

Standby function

HALT/STOP/IDLE mode

In power-saving mode: HALT/IDLE mode (with subsystem clock)

- · Clock division function
- Watch timer: 1 channel
- · Watchdog timer: 1 channel
- Clock output function
 Selectable from fxx, fxx/2, fxx/2², fxx/2³, fxx/2⁴, fxx/2⁵, fxx/2⁶, fxx/2⁷, fxT
- Buzzer output function
 Selectable from fxx/2¹⁰, fxx/2¹¹, fxx/2¹², fxx/2¹³
- A/D converter: 8-bit resolution × 8 channels
- D/A converter: 8-bit resolution × 2 channels
- Supply voltage: VDD = 2.2 to 5.5 V

Note μ PD784218Y only

Unless otherwise specified, references in this document to the μ PD784218 refer to the μ PD784218 and the μ PD784218Y.

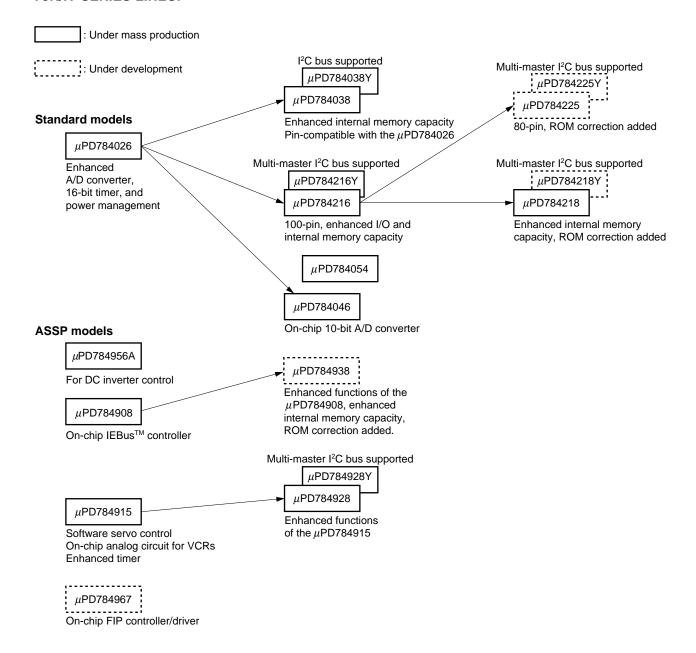
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATIONS

Cellular phones, personal handy phone system (PHS), cordless telephones, CD-ROM, AV equipment

ORDERING INFORMATION


Part Number	Package	Internal ROM	Internal RAM
		(Bytes)	(Bytes)
μPD784218GC-×××-8EU	100-pin plastic LQFP (fine pitch) (14 \times 14 mm)	256 K	12,800
μ PD784218GF- \times \times -3BA	100-pin plastic QFP (14 × 20 mm)	256 K	12,800
μ PD784218YGC- $\times\times$ -8EU ^{Note}	100-pin plastic LQFP (fine pitch) (14 \times 14 mm)	256 K	12,800
μ PD784218YGF-××-3BA Note	100-pin plastic QFP (14 × 20 mm)	256 K	12,800

Note Under development

Remark xxx indicates ROM code suffix.

★ 78K/IV SERIES LINEUP

OVERVIEW OF FUNCTIONS (1/2)

momory manning)			
mamanu mannina)			
memory mapping)			
main system clock)			
8			
ut out vave output pulse output			
ut put vave output			
ut put vave output			
ut put vave output			
ut put vave output			
ut put vave output			
ut put vave output			
UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O, multi-master supporting I ² C bus ^{Note 3}): 1 channel			
8-bit resolution × 8 channels			
8-bit resolution × 2 channels			
0/:-01/-01/-01/-01/-01/-0			

Notes 1. Under development

- 2. The pins with ancillary functions are included in the I/O pins.
- **3.** μ PD784218Y only

OVERVIEW OF FUNCTIONS (2/2)

Part Number		μPD784218, μPD784218Υ ^{Note}	
Item			
Clock output		Selectable from fxx, fxx/2, fxx/2 ² , fxx/2 ³ , fxx/2 ⁴ , fxx/2 ⁵ , fxx/2 ⁶ , fxx/2 ⁷ , fxT	
Buzzer output		Selectable from fxx/2 ¹⁰ , fxx/2 ¹¹ , fxx/2 ¹² , fxx/2 ¹³	
Watch timer		1 channel	
Watchdog time	er	1 channel	
Standby		HALT/STOP/IDLE modes In low-power consumption mode (with subsystem clock): HALT/IDLE mode	
Interrupts	Hardware sources	29 (internal: 20, external: 9)	
	Software sources	BRK instruction, BRKCS instruction, operand error	
	Non-maskable	Internal: 1, external: 1	
	Maskable	Internal: 19, external: 8	
4 programmable priority levels3 service modes: vectored interrupt/macr		 4 programmable priority levels 3 service modes: vectored interrupt/macro service/context switching 	
Supply voltage V		V _{DD} = 2.2 to 5.5 V	
Package		100-pin plastic LQFP (fine pitch) (14 × 14 mm)	
		100-pin plastic QFP (14 × 20 mm)	

Note Under development

CONTENTS

1.	DIFFERENCES AMONG MODELS IN μ PD784218, 784218Y SUBSERIES					
2.	DIFFERENCES BETWEEN μ PD784218 AND μ PD784216					
3.	MAJ	OR DIFFERENCES FROM μ PD78078, 78078Y SUBSERIES	9			
4.	PIN (CONFIGURATION (TOP VIEW)	10			
5.	BLO	CK DIAGRAM	13			
6.	PIN F	FUNCTIONS	14			
	6.1	Port Pins	14			
	6.2	Non-Port Pins	16			
	6.3	Pin I/O Circuits and Recommended Connections of Unused Pins	18			
7.	CPU	ARCHITECTURE	22			
	7.1	Memory Space	22			
	7.2	CPU Registers	24			
		7.2.1 General-purpose registers	24			
		7.2.2 Control registers	25			
		7.2.3 Special function registers (SFRs)	26			
8.	PERI	PHERAL HARDWARE FUNCTION FEATURES				
	8.1	Ports				
	8.2	Clock Generator				
	8.3	Real-Time Output Port	34			
	8.4	Timer/Event Counter	35			
	8.5		37			
	8.6	D/A Converter				
	8.7	Serial Interfaces	39			
		8.7.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)	40			
		8.7.2 Clocked serial interface (CSI)	42			
	8.8	Clock Output Function	43			
	8.9	Buzzer Output Function				
		Edge Detection Function	44			
		Watch Timer	44			
	8.12	Watchdog Timer	45			
9.	INTE	RRUPT FUNCTION	46			
	9.1	Interrupt Sources	46			
	9.2	Vectored Interrupt	48			
	9.3	Context Switching	49			
	9.4	Macro Service	49			
	9.5	Application Example of Macro Service	50			

	10. LOCAL BUS INTERFACE	
	10.1 Memory Expansion	52
	10.2 Programmable Wait	52
	10.3 External Access Status Function	52
	11. STANDBY FUNCTION	53
	12. RESET FUNCTION	55
	13. ROM CORRECTION	56
	14. INSTRUCTION SET	57
	15. ELECTRICAL SPECIFICATIONS	62
	16. PACKAGE DRAWINGS	81
*	17. RECOMMENDED SOLDERING CONDITIONS	83
	APPENDIX A DEVELOPMENT TOOLS	84
	APPENDIX B RELATED DOCUMENTS	87

★ 1. DIFFERENCES AMONG MODELS IN µPD784218, 784218Y SUBSERIES

The μ PD784218Y is the μ PD784218 with I²C bus control added.

The μ PD78F4218 and 78F4218Y are provided with a 256 KB flash memory instead of the mask ROM of the above models. These differences are summarized in Table 1-1.

Table 1-1. Differences Among Models in μ PD784218, 784218Y Subseries

Part Number Item	μPD784218, μPD784218Y	μPD78F4218, μPD78F4218Y
Internal ROM	256 KB (mask ROM)	256 KB (Flash memory)
Internal RAM	12,800 bytes	
Internal memory size switching register (IMS)	None	Provided ^{Note}
Supply voltage	V _{DD} = 2.2 to 5.5 V	V _{DD} = 2.7 to 5.5 V
Electrical specifications	Refer to the data sheet for each device.	
Recommended soldering conditions		
TEST pin	Provided	None
V _{PP} pin	None	Provided

Note The internal flash memory capacity and internal RAM capacity can be changed using the internal memory size switching register (IMS).

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (not engineering samples) of the mask ROM version.

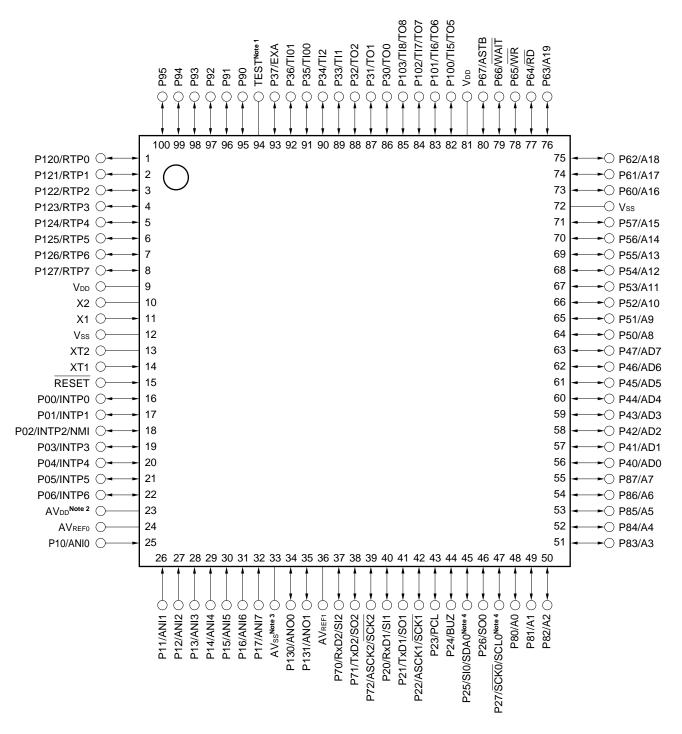
2. DIFFERENCES BETWEEN μ PD784218 AND μ PD784216

Table 2-1 shows the differences between the μ PD784218 and μ PD784216.

Table 2-1. Differences between μ PD784218 and μ PD784216

Part Number	μPD784218	μPD784216
Item		
Internal ROM	256 KB	128 KB
Internal RAM	12,800 bytes	8,192 bytes
ROM correction	Provided	None
External access status function	Provided	None

3. MAJOR DIFFERENCES FROM μ PD78078, 78078Y SUBSERIES

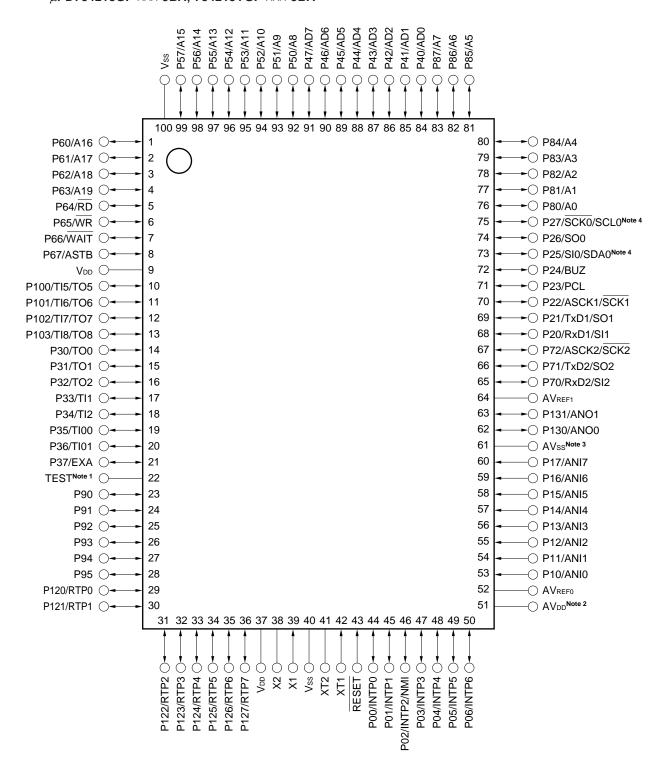

Item	Series Name	μPD784218, 784218Y Subseries	μPD78078, 78078Y Subseries
CPU		16-bit CPU	8-bit CPU
Minimum instruction With main execution time system clock		160 ns (@ 12.5 MHz operation)	400 ns (@ 5.0 MHz operation)
	With subsystem clock	61 μs (@ 32.768 kHz operation)	122 μs (@ 32.768 kHz operation)
Memory space		1 MB	64 KB
I/O ports	Total	86	88
	CMOS input	8	2
	CMOS I/O	72	78
	N-ch open-drain I/O	6	8
Pins with ancillary functions Note 1	Pins with pull-up resistor	70	86
	LED direct drive outputs	22	16
	Middle-voltage pins	6	8
Timer/counters		16-bit timer/event counter × 1 unit 8-bit timer/event counter × 6 units	16-bit timer/event counter × 1 unit 8-bit timer/event counter × 4 units
Serial interfaces		UART/IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O, multi-master supporting I ² C bus ^{Note 2}) × 1 channel	UART/IOE (3-wire serial I/O) × 1 channel CSI (3-wire serial I/O, 2-wire serial I/O, I ² C bus ^{Note 3}) × 1 channel CSI (3-wire serial I/O, 3-wire serial I/O with automatic transmit/receive function) × 1 channel
Interrupts	NMI pin	Provided	None
	Macro service	Provided	None
	Context switching	Provided	None
	Programmable priority	4 levels	None
Standby function		HALT/STOP/IDLE modes In low-power consumption mode: HALT/IDLE modes	HALT/STOP modes
ROM correction		Provided	None
External access status function		Provided	None
Package		100-pin plastic LQFP (fine pitch) (14 × 14 mm) 100-pin plastic QFP (14 × 20 mm)	 100-pin plastic LQFP (fine pitch) (14 × 14 mm) 100-pin plastic QFP (14 × 20 mm) 100-pin ceramic WQFN (14 × 20 mm) (μPD78P078 and 78P078Y only)

Notes $\ \ \,$ 1. The pins with ancillary functions are included in the I/O pins.

- **2.** μ PD784218Y Subseries only
- **3.** μ PD78078Y Subseries only

4. PIN CONFIGURATION (TOP VIEW)

• 100-pin plastic LQFP (fine pitch) (14 \times 14 mm) μ PD784218GC- $\times\times$ -8EU, 784218YGC- $\times\times$ -8EU^{Note 5}



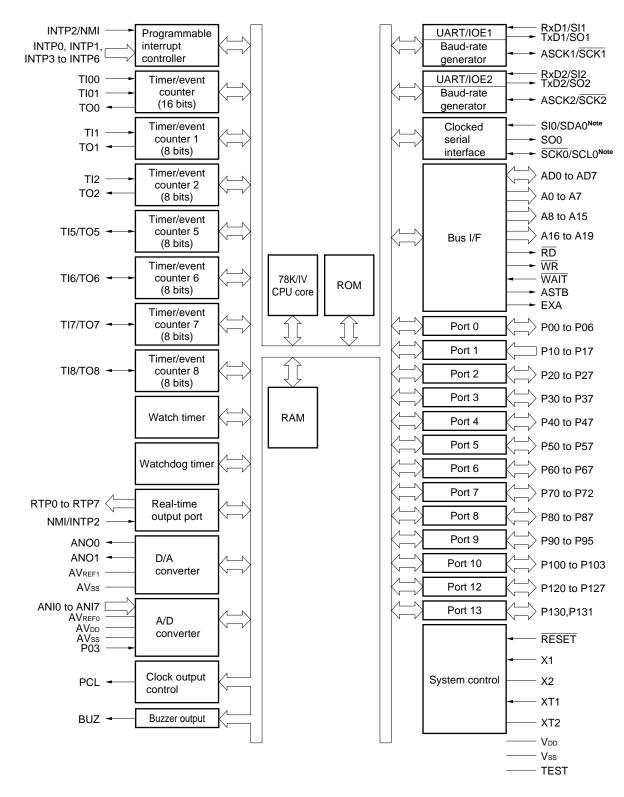
Notes 1. Connect the TEST pin directly to Vss or pull down. For the pull-down connection, use of a resistor whose resistance is between 470 Ω and 10 k Ω is recommended.

- 2. Connect the AVDD pin to VDD.
- 3. Connect the AVss pin to Vss.
- **4.** The SCL0 and SDA0 pins are incorporated only in the μ PD784218Y.
 - 5. Under development

100-pin plastic QFP (14 × 20 mm)

 μPD784218GF-××-3BA, 784218YGF-××-3BA^{Note 5}

Notes 1. Connect the TEST pin directly to Vss or pull down. For the pull-down connection, use of a resistor whose resistance is between 470 Ω and 10 k Ω is recommended.


- 2. Connect the AVDD pin to VDD.
- 3. Connect the AVss pin to Vss.
- **4.** The SCL0 and SDA0 pins are incorporated only in the μ PD784218Y.
- 5. Under development

A0 to A19:	Address Bus	P100 to P103:	Port 10
AD0 to AD7:	Address/Data Bus	P120 to P127:	Port 12
ANI0 to ANI7:	Analog Input	P130, P131:	Port 13
ANO0, ANO1:	Analog Output	PCL:	Programmable Clock
ASCK1, ASCK2	Asynchronous Serial Clock	RD:	Read Strobe
ASTB:	Address Strobe	RESET:	Reset
AVDD:	Analog Power Supply	RTP0 to RTP7:	Real-time Output Port
AVREF0, AVREF1:	Analog Reference Voltage	RxD1, RxD2:	Receive Data
AVss:	Analog Ground	SCK0 to SCK2:	Serial Clock
BUZ:	Buzzer Clock	SCL0 ^{Note} :	Serial Clock
EXA:	External Access Status Output	SDA0 ^{Note} :	Serial Data
INTP0 to INTP6:	Interrupt from Peripherals	SI0 to SI2:	Serial Input
NMI:	Non-maskable Interrupt	SO0 to SO2:	Serial Output
P00 to P06:	Port 0	TEST:	Test
P10 to P17:	Port 1	TI00, TI01,	
P20 to P27:	Port 2	TI1, TI2, TI5 to TI8:	Timer Input
P30 to P37:	Port 3	TO0 to TO2, TO5 to TO8:	Timer Output
P40 to P47:	Port 4	TxD1, TxD2:	Transmit Data
P50 to P57:	Port 5	V _{DD} :	Power Supply
P60 to P67:	Port 6	Vss:	Ground
P70 to P72:	Port 7	WAIT:	Wait
P80 to P87:	Port 8	WR:	Write Strobe
P90 to P95:	Port 9	X1, X2:	Crystal (Main System Clock)
		XT1, XT2:	Crystal (Subsystem Clock)

Note The SCL0 and SDA0 pins are incorporated only in the μ PD784218Y.

5. BLOCK DIAGRAM

Note SDA0 and SCL0 are incorporated only in the μ PD784218Y and support the I²C bus interface.

Remark The internal ROM capacity varies depending on the product.

6. PIN FUNCTIONS

6.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00	I/O	INTP0	Port 0 (P0):
P01		INTP1	• 7-bit I/O port
P02	1	INTP2/NMI	 Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip
P03	1	INTP3	pull-up resistor can be specified in 1-bit units by means of
P04	1	INTP4	software.
P05	1	INTP5	
P06	1	INTP6	
P10 to P17	Input	ANI0 to ANI7	Port 1 (P1): • 8-bit input-only port
P20	I/O	RxD1/SI1	Port 2 (P2):
P21	1	TxD1/SO1	8-bit I/O port
P22	1	ASCK1/SCK1	 Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip
P23	1	PCL	pull-up resistor can be specified in 1-bit units by means of
P24	1	BUZ	software.
P25	1	SI0/SDA0 ^{Note}	
P26	1	SO0	
P27]	SCK0/SCL0 ^{Note}	
P30	I/O	TO0	Port 3 (P3):
P31	1	TO1	8-bit I/O port Isost/outsut son be apposited in 4 bit units.
P32]	TO2	 Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip
P33		TI1	pull-up resistor can be specified in 1-bit units by means of
P34		TI2	software.
P35]	TI00	
P36		TI01	
P37		EXA	
P40 to P47	I/O	AD0 to AD7	Port 4 (P4): • 8-bit I/O port • Input/output can be specified in 1-bit units. • All pins set in input mode can be connected to on-chip pull-up resistors by means of software. • LEDs can be driven directly.
P50 to P57	I/O	A8 to A15	Port 5 (P5): • 8-bit I/O port • Input/output can be specified in 1-bit units. • All pins set in input mode can be connected to on-chip pull-up resistors by means of software. • LEDs can be driven directly.

Note SDA0 and SCL0 are incorporated only in the μ PD784218Y.

6.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P60	I/O	A16	Port 6 (P6):
P61		A17	8-bit I/O port
P62		A18	 Input/output can be specified in 1-bit units. All pins set in input mode can be connected to on-chip pull-up
P63		A19	resistors by means of software.
P64		RD	
P65		WR	
P66		WAIT	
P67		ASTB	
P70	I/O	RxD2/SI2	Port 7 (P7): • 3-bit I/O port
P71		TxD2/SO2	Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip
P72		ASCK2/SCK2	pull-up resistor can be specified in 1-bit units by means of software.
P80 to P87	I/O	A0 to A7	Port 8 (P8): • 8-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software. • The interrupt control flag (KRIF) is set to 1 when the falling edge is detected at a pin of this port.
P90 to P95	I/O	_	Port 9 (P9): N-ch open-drain middle-voltage I/O port 6-bit I/O port Input/output can be specified in 1-bit units. LEDs can be driven directly.
P100	I/O	TI5/TO5	Port 10 (P10):
P101		TI6/TO6	• 4-bit I/O port
P102		TI7/TO7	 Input/output can be specified in 1-bit units. Whether specifying input mode or output mode, use of an on-chip
P103		TI8/TO8	pull-up resistor can be specified in 1-bit units by means of software.
P120 to P127	I/O	RTP0 to RTP7	Port 12 (P12): • 8-bit I/O port • Input/output can be specified in 1-bit units. • Whether specifying input mode or output mode, use of an on-chip pull-up resistor can be specified in 1-bit units by means of software.
P130, P131	I/O	ANO0, ANO1	Port 13 (P13): • 2-bit I/O port • Input/output can be specified in 1-bit units.

6.2 Non-Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
TI00	Input	P35	External count clock input to 16-bit timer counter
TI01		P36	Capture trigger signal input to capture/compare register 00
TI1		P33	External count clock input to 8-bit timer counter 1
TI2	-	P34	External count clock input to 8-bit timer counter 2
TI5		P100/TO5	External count clock input to 8-bit timer counter 5
TI6		P101/TO6	External count clock input to 8-bit timer counter 6
TI7		P102/TO7	External count clock input to 8-bit timer counter 7
TI8		P103/TO8	External count clock input to 8-bit timer counter 8
TO0	Output	P30	16-bit timer output (also used as 14-bit PWM output)
TO1		P31	8-bit timer output (also used as 8-bit PWM output)
TO2		P32	
TO5		P100/TI5	
TO6		P101/TI6	
TO7		P102/TI7	
TO8		P103/TI8	
RxD1	Input	P20/SI1	Serial data input (UART1)
RxD2		P70/SI2	Serial data input (UART2)
TxD1	Output	P21/SO1	Serial data output (UART1)
TxD2		P71/SO2	Serial data output (UART2)
ASCK1	Input	P22/SCK1	Baud rate clock input (UART1)
ASCK2		P72/SCK2	Baud rate clock input (UART2)
SI0	Input	P25/SDA0	Serial data input (3-wire serial clock I/O0)
SI1		P20/RxD1	Serial data input (3-wire serial clock I/O1)
SI2		P70/RxD2	Serial data input (3-wire serial clock I/O2)
SO0	Output	P26	Serial data output (3-wire serial I/O0)
SO1	1	P21/TxD1	Serial data output (3-wire serial I/O1)
SO2	1	P71/TxD2	Serial data output (3-wire serial I/O2)
SDA0 ^{Note}	I/O	P25/SI0	Serial data input/output (I ² C bus)
SCK0]	P27	Serial clock input/output (3-wire serial I/O0)
SCK1		P22/ASCK1	Serial clock input/output (3-wire serial I/O1)
SCK2		P72/ASCK2	Serial clock input/output (3-wire serial I/O2)
SCL0 ^{Note}		P27/SCK0	Serial data input/output (I ² C bus)

Note Incorporated only in the μ PD784218Y.

6.2 Non-Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
NMI	Input	P02/INTP2	Non-maskable interrupt request input
INTP0		P00	External interrupt request input
INTP1		P01	-
INTP2		P02/NMI	-
INTP3		P03	-
INTP4		P04	-
INTP5		P05	-
INTP6		P06	-
PCL	Output	P23	Clock output (for trimming main system clock and subsystem clock)
BUZ	Output	P24	Buzzer output
RTP0 to RTP7	Output	P120 to P127	Real-time output port that outputs data in synchronization with trigger
AD0 to AD7	I/O	P40 to P47	Lower address/data bus for expanding memory externally
A0 to A7	Output	P80 to P87	Lower address bus for expanding memory externally
A8 to A15		P50 to P57	Middle address bus for expanding memory externally
A16 to A19		P60 to P63	Higher address bus for expanding memory externally
RD	Output	P64	Strobe signal output for read operation of external memory
WR		P65	Strobe signal output for write operation of external memory
WAIT	Input	P66	To insert wait state(s) when external memory is accessed
ASTB	Output	P67	Strobe output to externally latch address information output to ports 4 through 6 and port 8 to access external memory
EXA	Output	P37	Status signal output during external memory access
RESET	Input	_	System reset input
X1	Input	_	Crystal connection for main system clock oscillation
X2	_		
XT1	Input	_	Crystal connection for subsystem clock oscillation
XT2	_		
ANI0 to ANI7	Input	P10 to P17	Analog voltage input for A/D converter
ANO0, ANO1	Output	P130, P131	Analog voltage output for D/A converter
AV _{REF0}	_	_	To apply reference voltage for A/D converter
AV _{REF1}			To apply reference voltage for D/A converter
AV _{DD}			Positive power supply for A/D converter. Connect to VDD.
AVss			GND for A/D converter and D/A converter. Connect to Vss.
V _{DD}			Positive power supply
Vss			GND
TEST			Connect directly to Vss or pull down (this pin is for the IC test). For the pull-down connection, use of a resistor whose resistance is between 470 Ω and 10 k Ω is recommended.

6.3 Pin I/O Circuits and Recommended Connections of Unused Pins

The input/output circuit type of each pin and recommended connections of unused pins are shown in Table 6-1.

For the input/output circuit configuration of each type, refer to Figure 6-1.

★ Table 6-1. Type of Pin Input/Output Circuits and Recommended Connections of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P00/INTP0	8-N	I/O	Input: Independently connect to Vss via a resistor
P01/INTP1			Output: Leave open
P02/INTP2/NMI			
P03/INTP3 to P06/INTP6			
P10/ANI0 to P17/ANI7	9	Input	Connect to Vss or VDD
P20/RxD1/SI1	10-K	I/O	Input: Independently connect to Vss via a resistor
P21/TxD1/SO1	10-L		Output: Leave open
P22/ASCK1/SCK1	10-K		
P23/PCL	10-L		
P24/BUZ			
P25/SDA0 ^{Note} /SI0	10-K		
P26/SO0	10-L		
P27/SCL0 ^{Note} /SCK0	10-K		
P30/TO0 to P32/TO2	12-E		
P33/TI1, P34/TI2	8-N		
P35/TI00, P36/TI01	10-M		
P37/EXA	12-E		
P40/AD0 to P47/AD7	5-A		
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-N		
P71/TxD2/SO2	10-M		
P72/ASCK2/SCK2	8-N		
P80/A0 to P87/A7	12-E		
P90 to P95	13-D		
P100/TI5/TO5	8-N		
P101/TI6/TO6			
P102/TI7/TO7			
P103/TI8/TO8			
P120/RTP0 to P127/RTP7	12-E		

Note SDA0 and SCL0 are incorporated only in the μ PD784218Y.

Table 6-1. Types of Pin Input/Output Circuits and Recommended Connections of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P130/ANO0, P131/ANO1	12-F	I/O	Input: Independently connect to Vss via a resistor.
			Output: Leave open.
RESET	2-G	Input	_
XT1	16		Connect to Vss
XT2		_	Leave open
AVREF0	_		Connect to Vss
AVREF1]		Connect to VDD
AVDD]		
AVss			Connect to Vss
TEST			Connect directly to Vss or pull down. For the pull-down connection, use of a resistor whose resistance is between 470 Ω and 10 k Ω is recommended.

Remark Because the circuit type numbers are standardized among the 78K Series products, they are not sequential in some models (i.e., some circuits are not provided).

Figure 6-1. Types of Pin I/O Circuits (1/2)

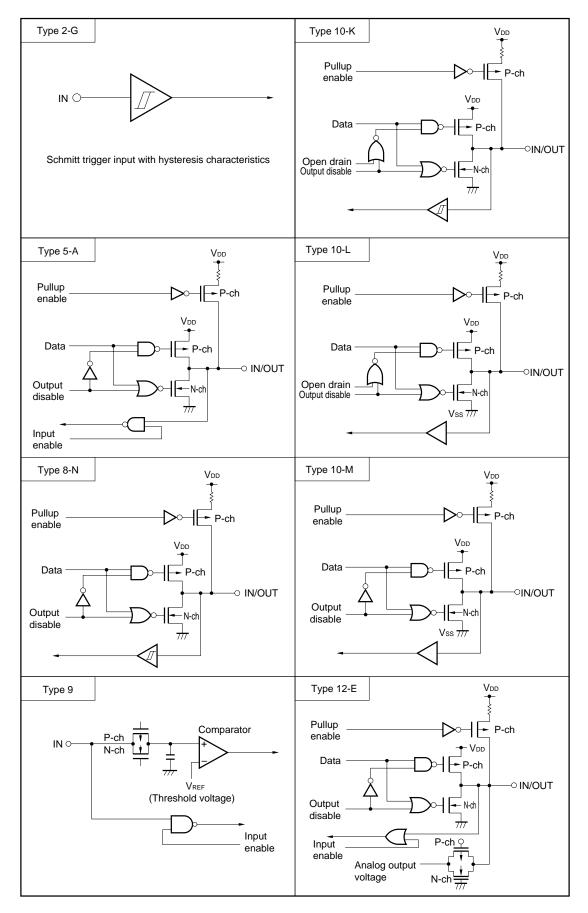
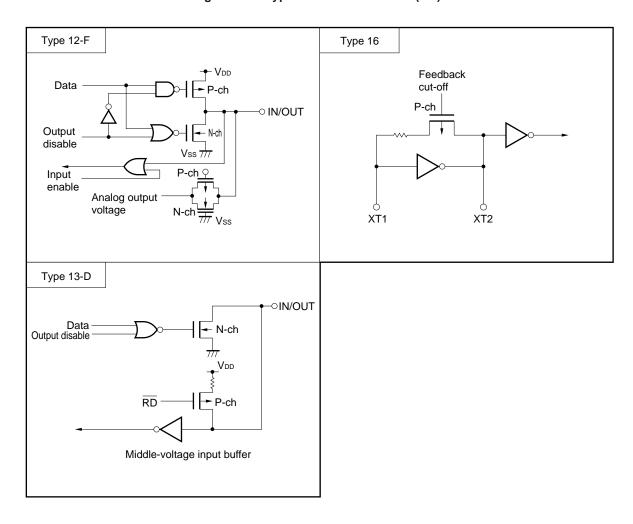



Figure 6-1. Types of Pin I/O Circuits (2/2)

7. CPU ARCHITECTURE

★ 7.1 Memory Space

A memory space of 1 MB can be accessed. Mapping of the internal data area (special function registers and internal RAM) can be specified by the LOCATION instruction. The LOCATION instruction must always be executed after reset cancellation, and must not be used more than once.

(1) When LOCATION 0H instruction is executed

Internal memory

The internal data area and internal ROM area are mapped as follows:

Part Number	Internal Data Area	Internal ROM Area
μPD784218,	0CD00H to 0FFFFH	00000H to 0CCFFH
μPD784218Y		10000H to 3FF

Caution The following areas that overlap the internal data area of the internal ROM cannot be used when the LOCATION 0 instruction is executed.

Part Number	Unusable Area
μPD784218,	0CD00H to 0FFFFH (13,056 bytes)
μPD784218Y	

External memory

The external memory is accessed in external memory expansion mode.

(2) When LOCATION 0FH instruction is executed

• Internal memory

The internal data area and internal ROM area are mapped as follows:

Part Number	Internal Data Area	Internal ROM Area
μPD784218, μPD784218Y	FCD00H to FFFFFH	00000H to 3FFFFH

External memory

The external memory is accessed in external memory expansion mode.

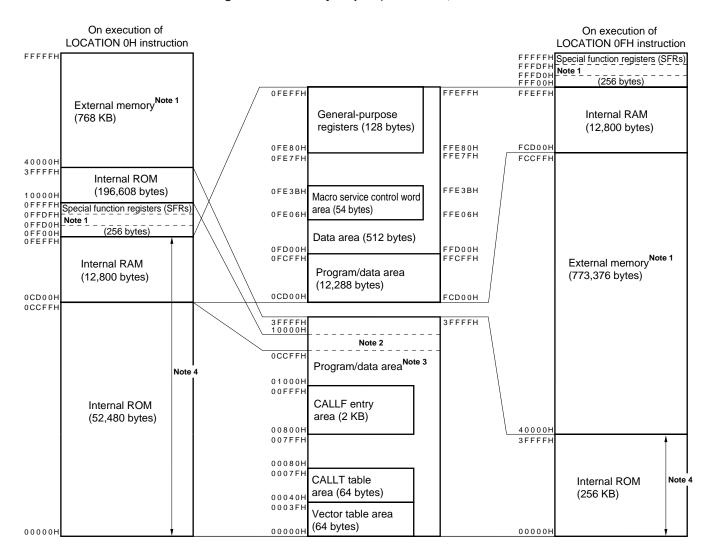


Figure 7-1. Memory Map of μ PD784218, 784218Y

- **Notes 1.** Accessed in external memory expansion mode.
 - 2. This 13,056-byte area can be used as internal ROM only when the LOCATION 0FH instruction is executed.
 - 3. On execution of LOCATION 0H instruction: 249,088 bytes, on execution of LOCATION 0FH instruction: 262,144 bytes
 - 4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area.

7.2 CPU Registers

7.2.1 General-purpose registers

Sixteen 8-bit general-purpose registers are available. Two 8-bit registers can be also used in pairs as a 16-bit register. Of the 16-bit registers, four can be used in combination with an 8-bit register for address expansion as 24-bit address specification registers.

Eight banks of these register sets are available and can be selected by using software or the context switching function

The general-purpose registers except the V, U, T, and W registers for address expansion are mapped to the internal RAM.

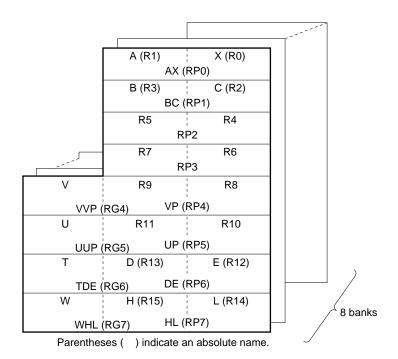
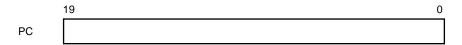


Figure 7-2. General-Purpose Register Format

Caution Registers R4, R5, R6, R7, RP2, and RP3 can be used as the X, A, C, B, AX, and BC registers, respectively, by setting the RSS bit of the PSW to 1. However, use this function only for recycling the program of the 78K/III Series.



7.2.2 Control registers

(1) Program counter (PC)

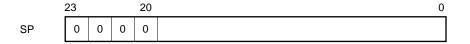
The program counter is a 20-bit register whose contents are automatically updated when the program is executed.

Figure 7-3. Program Counter (PC) Format

(2) Program status word (PSW)

This register holds the statuses of the CPU. Its contents are automatically updated when the program is executed.

Figure 7-4. Program Status Word (PSW) Format



Note This flag is provided to maintain compatibility with the 78K/III Series. Be sure to clear this flag to 0, except when the software for the 78K/III Series is used.

(3) Stack pointer (SP)

This is a 24-bit pointer that holds the first address of the stack. Be sure to write 0 to the higher 4 bits of this pointer.

Figure 7-5. Stack Pointer (SP) Format

7.2.3 Special function registers (SFRs)

The special function registers, such as the mode registers and control registers of the internal peripheral hardware, are registers to which special functions are allocated. These registers are mapped to the 256-byte space of addresses 0FF00H through 0FFFFHNote.

Note On execution of the LOCATION 0H instruction. FFF00H through FFFFFH on execution of the LOCATION 0FH instruction.

Caution Do not access an address in this area to which no SFR is allocated. If such an address is accessed by mistake, the μ PD784218 may enter a deadlock state. This deadlock state can be cleared only by inputting the RESET signal.

Table 7-1 lists the special function registers (SFRs). The meanings of the symbols in this table are as follows:

•	Symbol	Symbol indicating an SFR. This symbol is reserved for NEC's assembler
		(RA78K4). It can be used as sfr variable by the #pragma sfr command with the
		C compiler (CC78K4).

R/W: Read/write R: Read-only W: Write-only

• Bit units for manipulation .. Bit units in which the value of the SFR can be manipulated.

SFRs that can be manipulated in 16-bit units can be described as the operand sfrp of an instruction. To specify the address of this SFR, describe an even address.

SFRs that can be manipulated in 1-bit units can be described as the operand of a bit manipulation instruction.

Table 7-1. Special Function Register (SFR) List (1/4)

AddressNote 1	Special Function Register (SFR) Name	Symbol	R/W	Bit Units	Bit Units for Manipulation		After Reset
				1 bit	8 bits	16 bits	
0FF00H	Port 0	P0	R/W	√	√	_	00HNote 2
0FF01H	Port 1	P1	R	√	√	_	-
0FF02H	Port 2	P2	R/W	√	√	_	-
0FF03H	Port 3	P3		√	√	_	
0FF04H	Port 4	P4		√	√	_	
0FF05H	Port 5	P5		√	√	_	
0FF06H	Port 6	P6		√	√	_	
0FF07H	Port 7	P7		√	√	_	
0FF08H	Port 8	P8		√	√	-	
0FF09H	Port 9	P9		√	√	_	-
0FF0AH	Port 10	P10		√	√	_	
0FF0CH	Port 12	P12		√	√	_	
0FF0DH	Port 13	P13		√	√	_	-
0FF10H	16-bit timer counter	TM0	R	_	_	√	0000H
0FF11H							
0FF12H	Capture/compare register 00	CR00	R/W	_	_	√	
0FF13H	(16-bit timer/event counter)						
0FF14H	Capture/compare register 01	CR01		_	_	√	
0FF15H	(16-bit timer/event counter)						
0FF16H	Capture/compare control register 0	CRC0		√	√	_	00H
0FF18H	16-bit timer mode control register	TMC0		√	√	_	-
0FF1AH	16-bit timer output control register	TOC0		√	√	_	-
0FF1CH	Prescaler mode register 0	PRM0		√	√	_	
0FF20H	Port mode 0 register	PM0		√	√	_	FFH
0FF22H	Port mode 2 register	PM2		√	√	_	
0FF23H	Port mode 3 register	PM3		√	√	_	
0FF24H	Port mode 4 register	PM4		√	√	_	
0FF25H	Port mode 5 register	PM5		√	√	_	
0FF26H	Port mode 6 register	PM6		√	√	_	-
0FF27H	Port mode 7 register	PM7		√	√	_	
0FF28H	Port mode 8 register	PM8		√	√		
0FF29H	Port mode 9 register	PM9		√	√	_	
0FF2AH	Port mode 10 register	PM10		√	√	_	
0FF2CH	Port mode 12 register	PM12		√	√	_	
0FF2DH	Port mode 13 register	PM13		√	√	_	

Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

2. Because each port is initialized to input mode after reset, "00H" is not actually read. The output latch is initialized to "0".

Table 7-1. Special Function Register (SFR) List (2/4)

Address ^{Note}	Special Function Register (SFR) Name	Symbol		R/W	Bit Unit	s for Man	ipulation	After Reset
					1 bit	8 bits	16 bits	
0FF30H	Pull-up resistor option register 0	PU0		R/W	V	√	_	00H
0FF32H	Pull-up resistor option register 2	PU2			√	√	_	
0FF33H	Pull-up resistor option register 3	PU3			√	√	_	
0FF37H	Pull-up resistor option register 7	PU7			√	√	_	
0FF38H	Pull-up resistor option register 8	PU8			√	√	_	
0FF3AH	Pull-up resistor option register 10	PU10)		√	√	_	
0FF3CH	Pull-up resistor option register 12	PU12	2		√	√	_	
0FF40H	Clock output control register	CKS			√	√	_	
0FF42H	Port function control register	PF2			√	√	_	
0FF4EH	Pull-up resistor option register	PUO			√	√	_	
0FF50H	8-bit timer counter 1	TM1	TM1W	R	_	√	√	0000H
0FF51H	8-bit timer counter 2	TM2			_	√		
0FF52H	Compare register 10 (8-bit timer/event counter 1)	CR10	CR1W	R/W	_	√	√	-
0FF53H	Compare register 20 (8-bit timer/event counter 2)	CR20			_	√		
0FF54H	8-bit timer mode control register 1	TMC1	TMC1W		√	√	√	
0FF55H	8-bit timer mode control register 2	TMC2			√	√	-	
0FF56H	Prescaler mode register 1	PRM1	PRM1W		√	√	√	-
0FF57H	Prescaler mode register 2	PRM2			√	√		
0FF60H	8-bit timer counter 5	TM5	TM5W	R	_	√	√	-
0FF61H	8-bit timer counter 6	TM6			_	√		
0FF62H	8-bit timer counter 7	TM7	TM7W		_	√	√	
0FF63H	8-bit timer counter 8	TM8			_	√		
0FF64H	Compare register 50 (8-bit timer/event counter 5)	CR50	CR5W	R/W	_	√	√	
0FF65H	Compare register 60 (8-bit timer/event counter 6)	CR60			_	√		
0FF66H	Compare register 70 (8-bit timer/event counter 7)	CR70	CR7W		_	√	√	
0FF67H	Compare register 80 (8-bit timer/event counter 8)	CR80			_	√		
0FF68H	8-bit timer mode control register 5	TMC5	TMC5W		√	√	√	-
0FF69H	8-bit timer mode control register 6	TMC6			√	√		
0FF6AH	8-bit timer mode control register 7	TMC7	TMC7W		√	√	√	-
0FF6BH	8-bit timer mode control register 8	TMC8			√	√		
0FF6CH	Prescaler mode register 5	PRM5	PRM5W		√	√	√	
0FF6DH	Prescaler mode register 6	PRM6			√	√		
0FF6EH	Prescaler mode register 7	PRM7	PRM7W		√	√	√	-
0FF6FH	Prescaler mode register 8	PRM8	1		V	√	1	
0FF70H	Asynchronous serial interface mode register 1	ASIN	/11		√	√	_	00H
0FF71H	Asynchronous serial interface mode register 2	ASIN	Л 2		√	√	_	1
0FF72H	Asynchronous serial interface status register 1	ASIS	§1	R	√	√	_]
0FF73H	Asynchronous serial interface status register 2	ASIS	32		√	√	<u> </u>	1

Note When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

Table 7-1. Special Function Register (SFR) List (3/4)

AddressNote 1	Special Function Register (SFR) Name	Symbol	R/W	Bit Units	Bit Units for Manipulation		After Reset
				1 bit	8 bits	16 bits	
0FF74H	Transmit shift register 1	TXS1	W	_	√	_	FFH
	Receive buffer register 1	RXB1	R	_	√	_	
0FF75H	Transmit shift register 2	TXS2	W	_	√	_	
	Receive buffer register 2	RXB2	R	_	√	_	
0FF76H	Baud rate generator control register 1	BRGC1	R/W	√	√	_	00H
0FF77H	Baud rate generator control register 2	BRGC2	1	√	√	_	-
0FF7AH	Oscillation mode select register	CC	1	√	√	_	-
0FF80H	A/D converter mode register	ADM	1	√	√	_	-
0FF81H	A/D converter input select register	ADIS		√	√	_	-
0FF83H	A/D conversion result register	ADCR	R	_	√	_	Undefined
0FF84H	D/A conversion value setting register 0	DACS0	R/W	√	√	_	00H
0FF85H	D/A conversion value setting register 1	DACS1	1	√	√	_	-
0FF86H	D/A converter mode register 0	DAM0	1	√	√	_	-
0FF87H	D/A converter mode register 1	DAM1	1	√	√	_	-
0FF88H	ROM correction control register	CORC		√	√	_	-
0FF89H	ROM correction address pointer H	CORAH	1	_	√	_	-
0FF8AH	ROM correction address pointer L	CORAL		_	_	√	0000H
0FF8BH							
0FF8CH	External bus type select register	EBTS	1	√	√	<u> </u>	00H
0FF8DH	External access status enable register	EXAE	1	√	√	_	-
0FF90H	Serial operation mode register 0	CSIM0	1	√	√	_	-
0FF91H	Serial operation mode register 1	CSIM1	1	√	√	_	-
0FF92H	Serial operation mode register 2	CSIM2	1	√	√	_	-
0FF94H	Serial I/O shift register 0	SIO0	1	_	√	_	-
0FF95H	Serial I/O shift register 1	SIO1	1	_	√	_	-
0FF96H	Serial I/O shift register 2	SIO2	1	_	√	_	-
0FF98H	Real-time output buffer register L	RTBL	1	_	√	_	-
0FF99H	Real-time output buffer register H	RTBH		_	√	_	-
0FF9AH	Real-time output port mode register	RTPM	1	√	√	_	-
0FF9BH	Real-time output port control register	RTPC	1	√	√	_	-
0FF9CH	Watch timer mode control register	WTM	1	√	√	_	-
0FFA0H	External interrupt rising edge enable register	EGP0	1	√	√	_	-
0FFA2H	External interrupt falling edge enable register	EGN0	1	√	√	_	-
0FFA8H	In-service priority register	ISPR	R	√	√	_	1
0FFA9H	Interrupt select control register	SNMI	R/W	√	√	_	
0FFAAH	Interrupt mode control register	IMC	1	√	√	-	80H
0FFACH	Interrupt mask flag register 0L	MK0L MK0	1	√	√	√	FFFFH
0FFADH	Interrupt mask flag register 0H	MK0H		√	√	1	
0FFAEH	Interrupt mask flag register 1L	MK1L MK1]	√	√	√	-
0FFAFH	Interrupt mask flag register 1H	MK1H		√	√	1	
0FFB0H	I ² C bus control register ^{Note 2}	IICC0]	√	√	_	00H
0FFB2H	Prescaler mode register for serial clock	SRPM0	1	√	√	_	-

Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

2. μ PD784218Y only

Table 7-1. Special Function Register (SFR) List (4/4)

AddressNote 1	Special Function Register (SFR) Name	Symbol	R/W	Bit Unit	s for Man	ipulation	After Reset
				1 bit	8 bits	16 bits	
0FFB4H	Slave address register	SVA0	R/W	√	√	_	00H
0FFB6H	I ² C bus status register ^{Note 2}	IICS0	R	√	√	_	
0FFB8H	Serial shift register	IIC0	R/W	√	√	_	
0FFC0H	Standby control register	STBC		_	√	_	30H
0FFC2H	Watchdog timer mode register	WDM		_	√	_	00H
0FFC4H	Memory expansion mode register	MM		√	√	_	20H
0FFC7H	Programmable wait control register 1	PWC1		√	√	_	AAH
0FFCEH	Clock status register	PCS	R	√	√	_	32H
0FFCFH	Oscillation stabilization time specification register	OSTS	R/W	√	√	_	00H
0FFD0H to 0FFDFH	External SFR area	_		√	√	_	_
0FFE0H	Interrupt control register (INTWDTM)	WDTIC	1	√	√	_	43H
0FFE1H	Interrupt control register (INTP0)	PIC0	-	√	√	_	1
0FFE2H	Interrupt control register (INTP1)	PIC1	1	√	√		1
0FFE3H	Interrupt control register (INTP2)	PIC2	1	√	√	l –	1
0FFE4H	Interrupt control register (INTP3)	PIC3	1	√	√	<u> </u>	1
0FFE5H	Interrupt control register (INTP4)	PIC4		√	√	_	1
0FFE6H	Interrupt control register (INTP5)	PIC5		√	√	_	1
0FFE7H	Interrupt control register (INTP6)	PIC6		√	√	_	1
0FFE8H	Interrupt control register (INTIIC0/INTCSI0)	CSIIC0	1	√	√		1
0FFE9H	Interrupt control register (INTSER1)	SERIC1	1	√	√	_	1
0FFEAH	Interrupt control register (INTSR1/INTCSI1)	SRIC1	1	√	√	_	
0FFEBH	Interrupt control register (INTST1)	STIC1	1	√	√	_	
0FFECH	Interrupt control register (INTSER2)	SERIC2	1	√	√	_	
0FFEDH	Interrupt control register (INTSR2/INTCSI2)	SRIC2		√	√	_	1
0FFEEH	Interrupt control register (INTST2)	STIC2	1	√	√	_	-
0FFEFH	Interrupt control register (INTTM3)	TMIC3	1	√	√	_	1
0FFF0H	Interrupt control register (INTTM00)	TMIC00	1	√	V	_	
0FFF1H	Interrupt control register (INTTM01)	TMIC01	1	√	V	_	
0FFF2H	Interrupt control register (INTTM1)	TMIC1	1	√	√	_]
0FFF3H	Interrupt control register (INTTM2)	TMIC2	1	√	√	_	1
0FFF4H	Interrupt control register (INTAD)	ADIC	1	√	√	_	1
0FFF5H	Interrupt control register (INTTM5)	TMIC5		√	√	_]
0FFF6H	Interrupt control register (INTTM6)	TMIC6		V	√	_	1
0FFF7H	Interrupt control register (INTTM7)	TMIC7		√	√	_	1
0FFF8H	Interrupt control register (INTTM8)	TMIC8	1	√	√	_	1
0FFF9H	Interrupt control register (INTWT)	WTIC	1	√	√	_	1
0FFFAH	Interrupt control register (INTKR)	KRIC	1	√	√	<u> </u>	1

Notes 1. When the LOCATION 0H instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

2. μ PD784218Y only

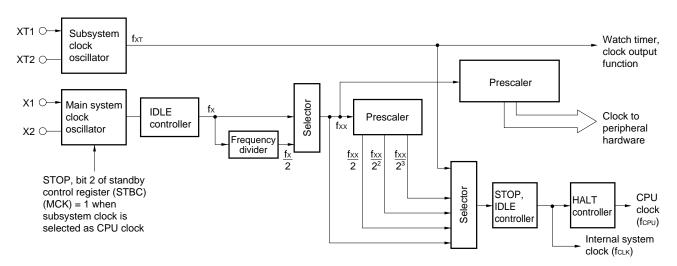
8. PERIPHERAL HARDWARE FUNCTION FEATURES

8.1 Ports

The ports shown in Figure 8-1 are provided to make various control operations possible. Table 8-1 shows the function of each port. Ports 0, 2 through 8, 10, and 12 can be connected to internal pull-up resistors by software when inputting.

P00 P70 Port 7 P72 Port 0 P80 P06 Port 8 P87 P10 to P17 Port 1 P90 Port 9 P20 P95 P100 Port 2 Port 10 P103 P27 P120 P30 Port 12 Port 3 P127 P37 P130 Port 13 P40 P131 Port 4 P47 P50 Port 5 P57 P60 Port 6 P67

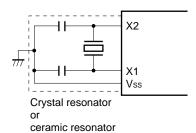
Figure 8-1. Port Configuration


Table 8-1. Port Functions

Port Name	Pin Name	Function	Specification of Pull-up Resistor Connection by Software
Port 0	P00 to P06	Can be set in input or output mode in 1-bit units	Can be specified in 1-bit units
Port 1	P10 to P17	• Input port	_
Port 2	P20 to P27	• Can be set in input or output mode in 1-bit units	Can be specified in 1-bit units
Port 3	P30 to P37	• Can be set in input or output mode in 1-bit units	Can be specified in 1-bit units
Port 4	P40 to P47	Can be set in input or output mode in 1-bit unitsCan directly drive LEDs	Can be specified in 1-port units
Port 5	P50 to P57	Can be set in input or output mode in 1-bit units Can directly drive LEDs	Can be specified in 1-port units
Port 6	P60 to P67	Can be set in input or output mode in 1-bit units	Can be specified in 1-port units
Port 7	P70 to P72	Can be set in input or output mode in 1-bit units	Can be specified in 1-bit units
Port 8	P80 to P87	Can be set in input or output mode in 1-bit units	Can be specified in 1-bit units
Port 9	P90 to P95	 N-ch open-drain I/O port Can be set in input or output mode in 1-bit units Can directly drive LEDs 	_
Port 10	P100 to P103	Can be set in input or output mode in 1-bit units	Can be specified in 1-bit units
Port 12	P120 to P127	Can be set in input or output mode in 1-bit units	Can be specified in 1-bit units
Port 13	P130, P131	Can be set in input or output mode in 1-bit units	_

8.2 Clock Generator

An on-chip clock generator necessary for operation is provided. This clock generator has a frequency divider. If high-speed operation is not necessary, the internal operating frequency can be lowered by the frequency divider to reduce the current consumption.


Figure 8-2. Clock Generator Block Diagram

*

Figure 8-3. Example of Using Main System Clock Oscillator

(1) Crystal/ceramic oscillation

(2) External clock

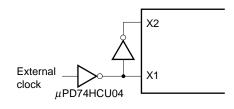
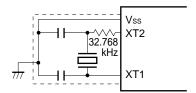
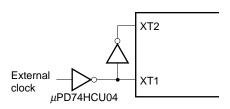




Figure 8-4. Example of Using Subsystem Clock Oscillator

(1) Crystal oscillation

(2) External clock

Caution When using the main system clock and subsystem clock oscillator, wire as following in the area enclosed by the broken lines in Figures 8-3 and 8-4 to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern in which a high current flows.
- · Do not fetch signals from the oscillator.

Note that the subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption.

8.3 Real-Time Output Port

The real-time output function is to transfer data preset in the real-time output buffer register to the output latch as soon as the timer interrupt or external interrupt has occurred in order to output the data to an external device. The pins that output the data to the external device constitute a port called a real-time output port.

Because the real-time output port can output signals without jitter, it is ideal for controlling stepper motors, etc.

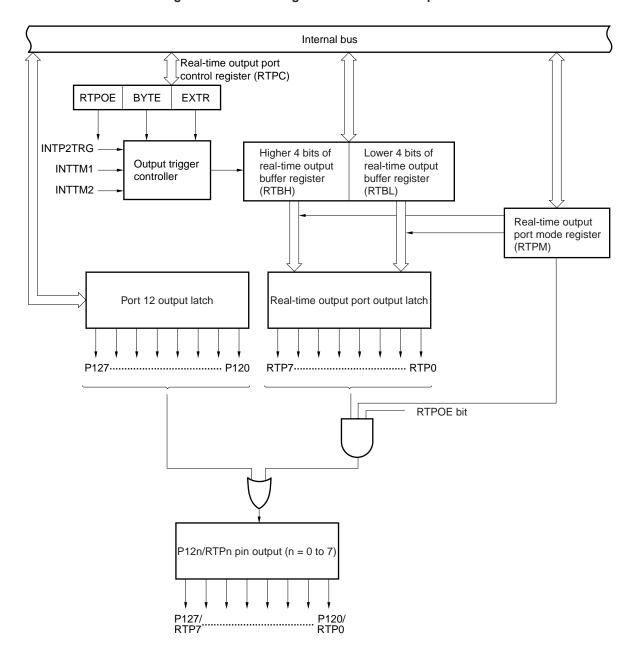
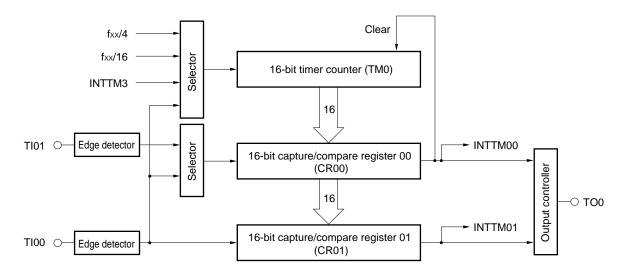


Figure 8-5. Block Diagram of Real-Time Output Port

8.4 Timer/Event Counter

One unit of 16-bit timer/event counters and six units of 8-bit timer/event counters are provided.

Because a total of eight interrupt requests are supported, these timer/event counters can be used as eight units of timers/counters.


Table 8-2. Operations of Timer/Event Counters

		Name	16-Bit	8-Bit	8-Bit	8-Bit	8-Bit	8-Bit	8-Bit
			Timer/Event						
Item			Counter	Counter 1	Counter 2	Counter 5	Counter 6	Counter 7	Counter 8
Count width	8 bits		T -	√	√	√	V	√	√
		6 bits	√	$\sqrt{}$		√		√	
Operation mode	Interval timer		1 ch						
	External event counter		√	√	√	√	V	√	√
Function	Т	imer output	1 ch						
		PPG output	√	_	_	_	_	_	_
		PWM output	-	√	√	√	V	V	√
		Square wave output	√	√	√	√	V	V	√
		One-shot pulse output	√	_	_	_	_	_	_
	Р	ulse width measurement	2 inputs	_	_				
	N	umber of interrupt requests	2	1	1	1	1	1	1

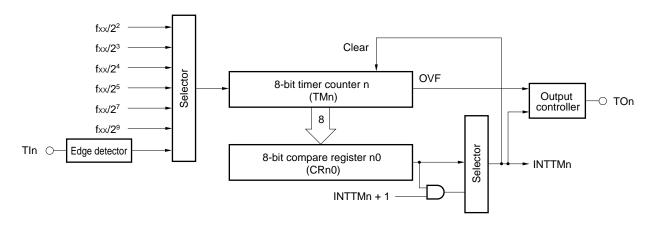
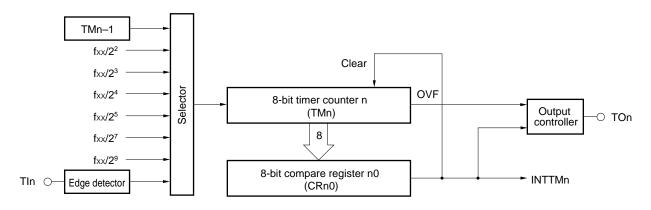


Figure 8-6. Block Diagram of Timer/Event Counters

16-bit timer/event counter


8-bit timer/event counter 1, 5, 7

Remarks 1. n = 1, 5, 7

2. OVF: Overflow flag

8-bit timer/event counter 2, 6, 8

Remarks 1. n = 2, 6, 8

2. OVF: Overflow flag

8.5 A/D Converter

An A/D converter converts an analog input variable into a digital signal. This microcontroller is provided with an A/D converter with a resolution of 8 bits and 8 channels (ANI0 through ANI7).

This A/D converter is of successive approximation type and the result of conversion is stored in the 8-bit A/D conversion result register (ADCR).

The A/D converter can be started in the following two ways:

- Hardware start
 Conversion is started by trigger input (P03).
- Software start
 Conversion is started by setting the A/D converter mode register (ADM).

One analog input channel is selected from ANI0 through ANI7 for A/D conversion. When A/D conversion is started by means of hardware start, conversion is stopped after it has been completed. When conversion is started by means of software start, A/D conversion is repeatedly executed, and each time conversion has been completed, an interrupt request (INTAD) is generated.

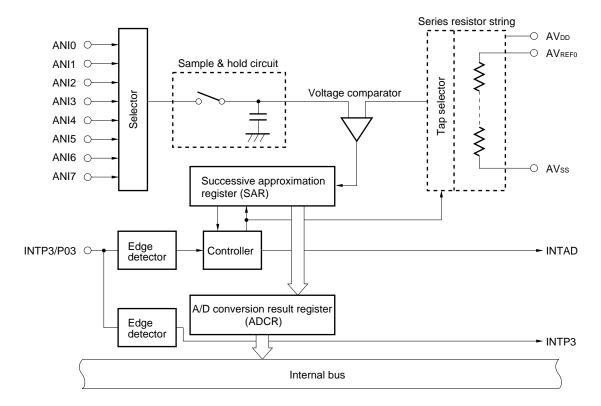


Figure 8-7. A/D Converter Block Diagram

8.6 D/A Converter

A D/A converter converts an input digital signal into an analog voltage. This microcontroller is provided with a voltage output type D/A converter with a resolution of 8 bits and two channels.

The conversion method is of R-2R resistor ladder type.

D/A conversion is started by setting DACE0 of D/A converter mode register 0 (DAM0) and DACE1 of D/A converter mode register 1 (DAM1).

The D/A converter operates in the following two modes:

Normal mode

The converter outputs an analog voltage immediately after it has completed D/A conversion.

• Real-time output mode

The converter outputs an analog voltage in synchronization with an output trigger after it has completed D/A conversion.

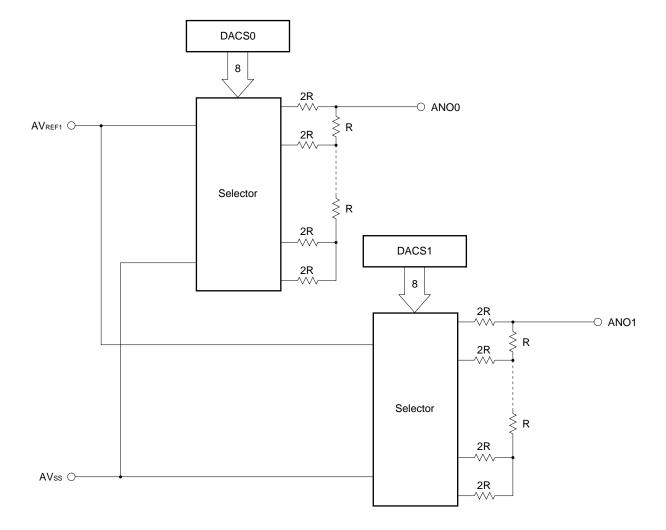
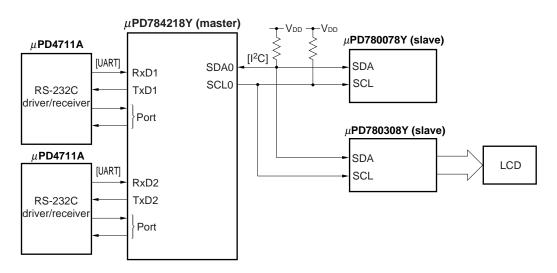


Figure 8-8. D/A Converter Block Diagram

8.7 Serial Interfaces


Three independent serial interface channels are provided.

- Asynchronous serial interface (UART)/3-wire serial I/O (IOE) × 2
- Clocked serial interface (CSI) × 1
 - 3-wire serial I/O (IOE)
 - I²C bus interface (I²C) (μPD784218Y Subseries only)

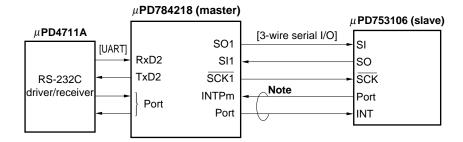

Therefore, communication with an external system and local communication within the system can be simultaneously executed (refer to **Figure 8-9**).

Figure 8-9. Example of Serial Interface

(a) $UART + I^2C$

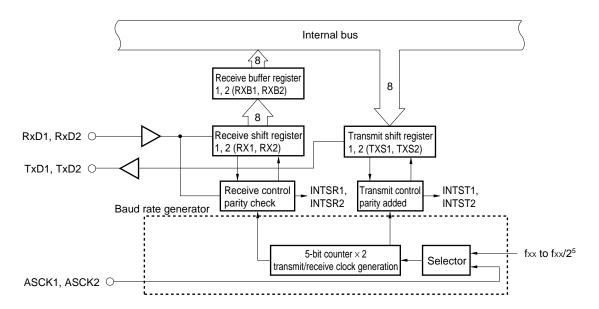
(b) UART + 3-wire serial I/O

Note Handshake line

8.7.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)

Two channels of serial interfaces for which an asynchronous serial interface mode and 3-wire serial I/O mode can be selected are provided.

(1) Asynchronous serial interface mode

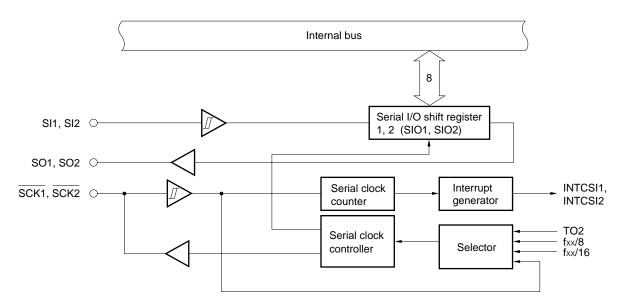

In this mode, data of 1 byte following the start bit is transmitted or received.

Because an on-chip baud rate generator is provided, a wide range of baud rates can be set.

Moreover, the clock input to the ASCK pin can be divided to define a baud rate.

When the baud rate generator is used, a baud rate conforming to the MIDI standard (31.25 kbps) can also be obtained.

Figure 8-10. Block Diagram When in Asynchronous Serial Interface Mode



(2) 3-wire serial I/O mode

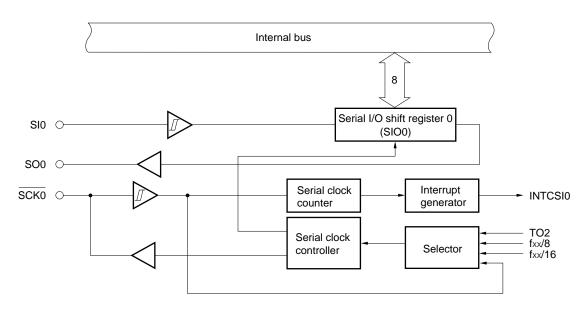
In this mode, the master device starts transfer by making the serial clock active and transfers 1-byte data in synchronization with this clock.

This mode is used to communicate with a device having the conventional clocked serial interface. Basically, communication is established by using three lines: serial clocks ($\overline{SCK1}$ and $\overline{SCK2}$), serial data inputs (SI1 and SI2), and serial data outputs (SO1 and SO2). To connect two or more devices, a handshake line is necessary.

Figure 8-11. Block Diagram When in 3-Wire Serial I/O Mode

8.7.2 Clocked serial interface (CSI)

In this mode, the master device starts transfer by making the serial clock active and transfers 1-byte data in synchronization with this clock.


(1) 3-wire serial I/O mode

This mode is to communicate with devices having the conventional clocked serial interface.

Basically, communication is established in this mode with three lines: one serial clock ($\overline{SCK0}$) and two serial data (SI0 and SO0) lines.

Generally, a handshake line is necessary to check the reception status.

Figure 8-12. Block Diagram When in 3-Wire Serial I/O Mode

(2) I²C bus (Inter IC) bus mode (multi-master supporting)

This mode is for communication with devices conforming to the I²C bus format.

This mode is for transferring 8-bit data between two or more devices by using two lines: a serial clock (SCL0) and a serial data bus (SDA0).

During transfer, a "start condition", "data", and "stop condition" can be output onto the serial data bus. During reception, this data is automatically detected by hardware.

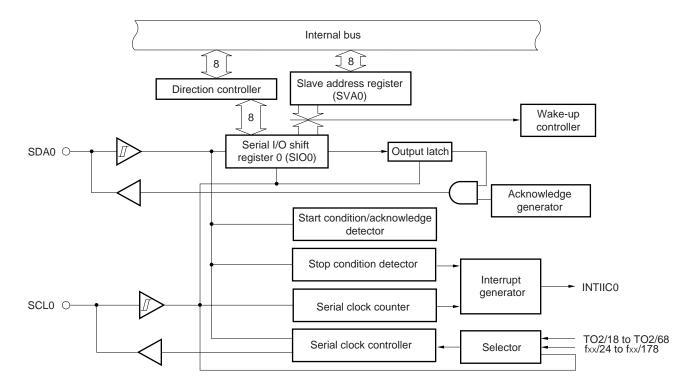


Figure 8-13. Block Diagram of I²C Bus Mode

8.8 Clock Output Function

Clocks of the following frequencies can be output as clock output.

- 97.7 kHz/195 kHz/391 kHz/781 kHz/1.56 MHz/3.13 MHz/6.25 MHz/12.5 MHz
 (@ 12.5 MHz operation with main system clock)
- 32.768 kHz (@ 32.768 kHz operation with subsystem clock)

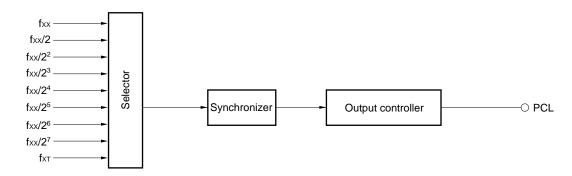
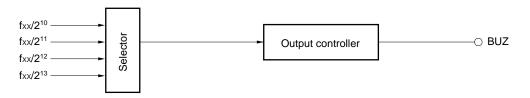


Figure 8-14. Block Diagram of Clock Output Function



8.9 Buzzer Output Function

Clocks of the following frequencies can be output as buzzer output.

• 1.5 kHz/3.1 kHz/6.1 kHz/12.2 kHz (@ 12.5 MHz operation with main system clock)

Figure 8-15. Block Diagram of Buzzer Output Function

8.10 Edge Detection Function

The interrupt input pins (INTP0, INTP1, NMI/INTP2, INTP3 through INTP6) are used not only to input interrupt requests but also to input trigger signals to the internal hardware units. Because these pins operate at an edge of the input signal, they have a function to detect an edge. Moreover, a noise reduction function is also provided to prevent erroneous detection due to noise.

Pin Name	Detectable Edge	Noise Reduction		
NMI	Either or both of rising and falling edges	By analog delay		
INTP0 to INTP6				

8.11 Watch Timer

The watch timer has the following functions:

- Watch timer
- Interval timer

The watch timer and interval timer functions can be used at the same time.

(1) Watch timer

The watch timer sets the WTIF flag of the interrupt control register (WTIC) at time intervals of 0.5 seconds using the 32.768 kHz subsystem clock.

(2) Interval timer

The interval timer generates an interrupt request (INTTM3) at preset time intervals.

fw Selector 214 5-bit counter Selector Prescaler INTWT $\frac{\text{fw}}{2^5}$ $\frac{\text{fw}}{2^7}$ $\frac{fw}{2^8}$ $\frac{\text{fw}}{2^9}$ fw 25 $\frac{\text{fw}}{2^6}$ Selector - INTTM3 To 16-bit timer/ event counter

Figure 8-16. Watch Timer Block Diagram

8.12 Watchdog Timer

A watchdog timer is provided to detect a CPU runaway. This watchdog timer generates a non-maskable or maskable interrupt unless it is cleared by software within a specified interval time. Once enabled to operate, the watchdog timer cannot be stopped by software. Whether the interrupt by the watchdog timer or the interrupt input from the NMI pin takes precedence can be specified.

fclk Timer $f_{\text{CLK}/2^{21}}$ $f_{\text{CLK}/2^{20}}$ $f_{\text{CLK}/2^{19}}$ $f_{\text{CLK}/2^{17}}$ Clear signal

Figure 8-17. Watchdog Timer Block Diagram

Remark fclk: Internal system clock (fxx to fxx/8)

9. INTERRUPT FUNCTION

The three types of servicing in response to an interrupt request shown in Table 9-1 can be selected by program.

Table 9-1. Servicing of Interrupt Request

Servicing Mode	Servicing Means	Servicing	Contents of PC and PSW
Vectored interrupt	Software	Branches and executes servicing routine (servicing is arbitrary)	Saves to and restores from stack
Context switching		Automatically switches register bank, branches and executes servicing routine (servicing is arbitrary)	Saves to or restores from fixed area in register bank
Macro service	Firmware	Executes data transfer between memory and I/O (servicing is fixed)	Retained

9.1 Interrupt Sources

Table 9-2 shows the interrupt sources available. As shown, interrupts are generated by 29 sources, execution of the BRK instruction, BRKCS instruction, or an operand error.

The priority of interrupt servicing can be set to four levels, so that nesting can be controlled during interrupt servicing, and so that which of the two or more interrupts that simultaneously occur should be serviced first can be decided. When the macro service function is used, however, nesting always proceeds (i.e., is not held pending).

The default priority is the priority (fixed) of the service that is performed if two or more interrupt requests, having the same priority, are simultaneously generated (refer to **Table 9-2**).

Table 9-2. Interrupt Sources (1/2)

Туре	Default		Source	Internal/	Macro
	Priority	Name	Trigger	External	Service
Software	_	BRK instruction	Instruction execution	_	_
		BRKCS instruction	Instruction execution		
		Operand error	If result of exclusive OR between operands byte and byte is not FFH when MOV STBC, #byte instruction, MOV WDM, #byte instruction, or LOCATION instruction is executed		
Non-maskable	_	NMI	Pin input edge detection	External	_
		INTWDT	Overflow of watchdog timer	Internal	
Maskable	0 (highest)	INTWDTM	Overflow of watchdog timer	Internal	$\sqrt{}$
	1	INTP0	Pin input edge detection	External	
	2	INTP1			
	3	INTP2			
	4	INTP3			
	5	INTP4			
	6	INTP5			
	7	INTP6			
	8	INTIIC0	End of I ² C bus transfer by CSI0	Internal	
		INTCSI0	End of 3-wire transfer by CSI0		
	9	INTSER1	Occurrence of UART reception error in ASI1		

Data Sheet U12304EJ2V0DS00

Table 9-2. Interrupt Sources (2/2)

Туре	Default		Source	Internal/	Macro
	Priority	Name	Trigger	External	Service
Maskable	10	INTSR1	End of UART reception by ASI1	Internal	V
		INTCSI1	End of 3-wire transfer by CSI1		
	11	INTST1	End of UART transmission by ASI1		
	12	INTSER2	Occurrence of UART reception error in ASI2		
	13	INTSR2	End of UART reception by ASI2		
		INTCSI2	End of 3-wire transfer by CSI2		
	14	INTST2	End of UART transmission by ASI2		
	15	INTTM3	Reference time interval signal from watch timer		
	16	INTTM00	Signal indicating coincidence between 16-bit timer counter and capture/compare register (CR00)		
	17	INTTM01	Signal indicating coincidence between 16-bit timer counter and capture/compare register (CR01)		
	18	INTTM1	Occurrence of coincidence signal of 8-bit timer/event counter 1		
	19	INTTM2	Occurrence of coincidence signal of 8-bit timer/event counter 2		
	20	INTAD	End of conversion by A/D converter		
	21	INTTM5	Occurrence of coincidence signal of 8-bit timer/event counter 5		
	22	INTTM6	Occurrence of coincidence signal of 8-bit timer/event counter 6		
	23	INTTM7	Occurrence of coincidence signal of 8-bit timer/event counter 7		
	24	INTTM8	Occurrence of coincidence signal of 8-bit timer/event counter 8		
	25	INTWT	Overflow of watch timer		
	26 (lowest)	INTKR	Detection of falling edge of port 8	External	

Remarks 1. ASI: Asynchronous Serial Interface

CSI: Clocked Serial Interface

2. Two watchdog timer interrupt sources, non-maskable interrupt (INTWDT) and maskable interrupt (INTWDTM), are available and only one of those can be selected.

Data Sheet U12304EJ2V0DS00

9.2 Vectored Interrupt

Execution branches to a servicing routine by using the memory contents of a vector table address corresponding to the interrupt source as the address of the branch destination.

So that the CPU performs interrupt servicing, the following operations are performed:

- On branching: Saves the status of the CPU (contents of PC and PSW) to stack
- On returning: Restores the status of the CPU (contents of PC and PSW) from stack

To return to the main routine from an interrupt service routine, the RETI instruction is used.

The branch destination address is in a range of 0 to FFFFH.

Table 9-3. Vector Table Address

Interrupt Source	Vector Table Address	Interrupt Source	Vector Table Address
BRK instruction	003EH	INTST1	001CH
TRAP0 (operand error)	003CH	INTSER2	001EH
NMI	0002H	INSR2	0020H
INTWDT (non-maskable)	0004H	INTCSI2	
INTWDTM (maskable)	0006H	INTST2	0022H
INTP0	0008H	INTTM3	0024H
INTP1	000AH	INTTM00	0026H
INTP2	000CH	INTTM01	0028H
INTP3	000EH	INTTM1	002AH
INTP4	0010H	INTTM2	002CH
INTP5	0012H	INTAD	002EH
INTP6	0014H	INTTM5	0030H
INTIIC0	0016H	INTTM6	0032H
INTCSI0		INTTM7	0034H
INTSER0	0018H	INTTM8	0036H
INTSR1	001AH	INTWT	0038H
INTCSI1		INTKR	003AH

Data Sheet U12304EJ2V0DS00

9.3 Context Switching

When an interrupt request is generated or when the BRKCS instruction is executed, a predetermined register bank is selected by hardware. Context switching is a function that branches execution to a vector address stored in advance in the register bank, and stacks the current contents of the program counter (PC) and program status word (PSW) to the register bank.

The branch address is in a range of 0 to FFFFH.

Register bank 0000B (0 to 7)<7> Transfer Register bank n (n = 0 to 7) PC19-16 PC15-0 Χ Α С В <6> Exchange R5 R4 <2> Save (bits 8 through 11 R7 R6 of temporary register) <5> Save ٧ VΡ UP U <3> Switching of register bank Temporary register (RBS0 to RBS2 \leftarrow n) Т D Ε <4> / RSS ← 0 \ Н L W <1> Save /IE $\leftarrow 0$ **PSW**

Figure 9-1. Context Switching Operation When Interrupt Request Is Generated

9.4 Macro Service

This function is to transfer data between memory and a special function register (SFR) without intervention by the CPU. A macro service controller accesses the memory and SFR in the same transfer cycle and directly transfers data without loading it.

Because this function does not save or restore the status of the CPU, or load data, data can be transferred at high speeds.

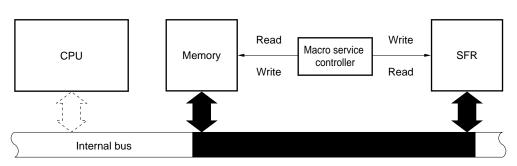
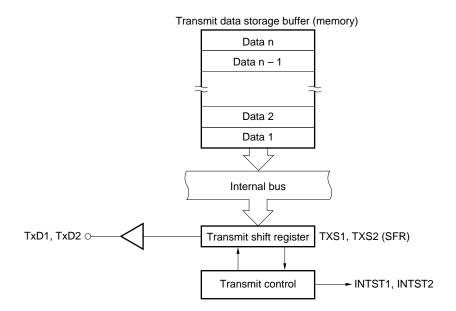
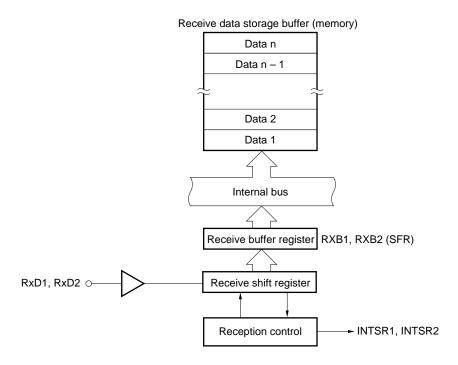



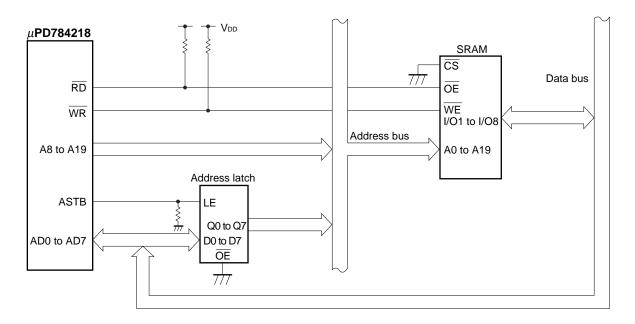
Figure 9-2. Macro Service


9.5 Application Example of Macro Service

(1) Serial interface transmission

Each time macro service requests INTST1 and INTST2 are generated, the next transmit data is transferred from memory to TXS1 and TXS2. When data n (last byte) has been transferred to TXS1 and TXS2 (when the transmit data storage buffer has become empty), vectored interrupt requests INTST1 and INTST2 are generated.

(2) Serial interface reception


Each time macro service requests INTSR1 and INTSR2 are generated, the receive data is transferred from RXB1 and RXB2 to memory. When data n (last byte) has been transferred to memory (when the receive data storage buffer has become full), vectored interrupt requests INTSR1 and INTSR2 are generated.

10. LOCAL BUS INTERFACE

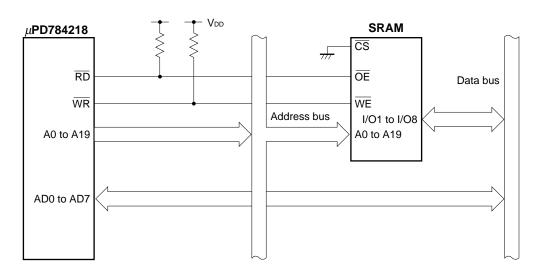

The local bus interface can connect an external memory or I/O (memory mapped I/O) and support a memory space of 1 MB (refer to **Figure 10-1**).

Figure 10-1. Example of Local Bus Interface

(a) Multiplexed bus mode

(b) Separate bus mode

10.1 Memory Expansion

External program memory and data memory can be connected in two stages: 256 KB and 1 MB.

To connect the external memory, ports 4 through 6 and port 8 are used.

The external memory can be connected in the following two modes:

• Multiplexed bus mode: The external memory is connected by using a time-division address/data bus. The

number of ports used when the external memory is connected can be reduced in this

mode.

• Separate bus mode: The external memory is connected by using an address bus and data bus independent

of each other. Because an external latch circuit is not necessary, this mode is useful for reducing the number of components and mounting area on the printed wiring board.

10.2 Programmable Wait

Wait state(s) can be inserted to the memory space (00000H through FFFFH) while the \overline{RD} and \overline{WR} signals are active.

In addition, there is an address wait function that extends the active period of the ASTB signal to gain the address decode time.

10.3 External Access Status Function

An active-low external access status signal is output from the P37/EXA pin. This signal informs other devices that are connected with external buses of the external access status, prohibits other devices from outputting data to an external bus, and enables receive operations.

The external access status signal is output during external accessing.

11. STANDBY FUNCTION

This function is to reduce the power consumption of the chip, and can be used in the following modes:

HALT mode: Stops supply of the operating clock to the CPU. This mode is used

in combination with the normal operation mode for intermittent operation

to reduce the average power consumption.

• IDLE mode: Stops the entire system with the oscillator continuing operation. The

power consumption in this mode is close to that in the STOP mode. However, the time required to restore the normal program operation from this mode is almost the same as that from the HALT mode.

• STOP mode: Stops the main system clock and thereby stops all the internal

operations of the chip. Consequently, the power consumption is

minimized with only leakage current flowing.

• Low power consumption mode: The main system clock is stopped with the subsystem clock used as

the system clock. The CPU can operate on the subsystem clock to

reduce the current consumption.

· Low power consumption HALT mode: This is a standby function in the low power consumption mode and

stops the operation clock of the CPU, to reduce the power consumption

of the entire system.

· Low power consumption IDLE mode: This is a standby function in the low power consumption mode and

stops the entire system except the oscillator, to reduce the power

consumption of the entire system.

These modes are programmable.

The macro service can be started from the HALT mode or low power consumption HALT mode. After macro service processing is executed, the system returns to the HALT mode again.

The transition of the standby status is shown in Figure 11-1.

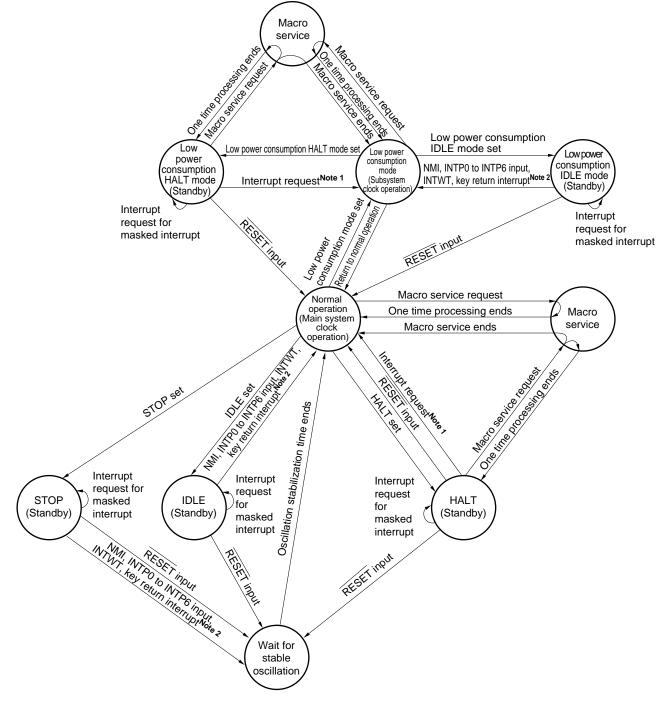


Figure 11-1. Standby Function State Transition

Notes 1. Only unmasked interrupt requests

2. Only unmasked INTP0 to INTP6, INTWT, key return interrupt (P80 to P87)

Remark NMI is valid only for an external input.

The watchdog timer cannot be used for the release of standby (HALT mode/STOP mode/IDLE mode).

12. RESET FUNCTION

When a low-level signal is input to the RESET pin, the system is reset, and each hardware unit is initialized (reset). During the reset period, oscillation of the main system clock is unconditionally stopped. Consequently, the current consumption of the entire system can be reduced.

When the RESET signal goes high, the reset status is cleared, the oscillation stabilization time (84.0 ms at 12.5 MHz operation) elapses, the contents of the reset vector table are set to the program counter (PC), execution branches to an address set to the PC, and program execution is started from that branch address. Therefore, the program can be reset and started from any address.

Main system clock oscillator

Oscillation is unconditionally stopped during reset period

FCLK

RESET input

Oscillation stabilization time

Figure 12-1. Oscillation of Main System Clock During Reset Period

The RESET input pin has an analog delay noise eliminator to prevent malfunctioning due to noise.

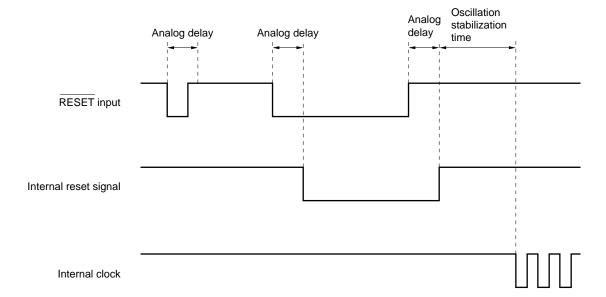


Figure 12-2. Acknowledgement of Reset Signal

13. ROM CORRECTION

ROM correction is a function for avoiding execution of a part of a program in the internal ROM that needs to be corrected by executing the corrected program, which is stored in the internal RAM.

By using this function, instruction bugs found in the internal ROM can be avoided and the program flow can be changed.

Up to four combinations between source internal ROM (program) and target RAM sections are available for the ROM correction.

Correction branch processing request signal (CALLT instruction)

Correction address pointer n

Correction address register (CORAH, CORAL)

ROM correction control register (CORC)

Internal bus

Figure 13-1. ROM Correction Block Diagram

Remark n = 0 to 3, m = 0, 1

14. INSTRUCTION SET

(1) 8-bit instructions (The instructions in parentheses are combinations realized by describing A as r) MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC

Table 14-1. Instruction List by 8-Bit Addressing

Second Operand	#byte	А	r r'	saddr saddr'	sfr	!addr16	mem [saddrp]	r3 PSWL	[WHL+]	n	None ^{Note 2}
First Operand							[%saddrg]	PSWH			
А	(MOV) ADD ^{Note 1}	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH (ADD) ^{Note 1}	(MOV)Note 6 (XCH)Note 6 (ADD)Notes 1,6	MOV (XCH) (ADD) ^{Note 1}	(MOV) (XCH) ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV	(MOV) (XCH) (ADD) ^{Note 1}		
r	MOV ADD ^{Note 1}	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH				RORNote 3	MULU DIVUW INC DEC
saddr	MOV ADD ^{Note 1}	(MOV) ^{Note 6} (ADD) ^{Note 1}	MOV ADD ^{Note 1}	MOV XCH ADD ^{Note 1}							INC DEC DBNZ
sfr	MOV ADD ^{Note 1}	MOV (ADD) ^{Note 1}	MOV ADD ^{Note 1}								PUSH POP
!addr16 !!addr24	MOV	(MOV) ADD ^{Note 1}	MOV								
mem [saddrp] [%saddrg]		MOV ADD ^{Note 1}									
mem3											ROR4 ROL4
r3 PSWL PSWH	MOV	MOV									
В, С											DBNZ
STBC, WDM	MOV										
[TDE+] [TDE-]		(MOV) (ADD) ^{Note 1} MOVM ^{Note 4}							MOVBKNote 5		

Notes 1. The operands of ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as those of ADD.

- 2. Either the second operand is not used, or the second operand is not an operand address.
- 3. The operands of ROL, RORC, ROLC, SHR, and SHL are the same as those of ROR.
- 4. The operands of XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as those of MOVM.
- **5.** The operands of XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as those of MOVBK.
- **6.** The code length of some instructions having saddr2 as saddr in this combination is short.

(2) 16-bit instructions (The instructions in parentheses are combinations realized by describing AX as rp)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 14-2. Instruction List by 16-Bit Addressing

Second Operand	#word	AX	rp	saddrp	sfrp	!addr16	mem	[WHL+]	byte	n	None ^{Note 2}
			rp'	saddrp'		!!addr24	[saddrp]				
First Operand							[%saddrg]				
AX	(MOVW)	(MOVW)	(MOVW)	(MOVW)Note 3	MOVW	(MOVW)	MOVW	(MOVW)			
	ADDW ^{Note 1}	(XCHW)	(XCHW)	(XCHW)Note 3	(XCHW)	XCHW	XCHW	(XCHW)			
		(ADD)Note 1	(ADDW) ^{Note 1}	(ADDW) ^{Notes 1, 3}	(ADDW) ^{Note 1}						
rp	MOVW	(MOVW)	MOVW	MOVW	MOVW	MOVW				SHRW	MULW ^{Note 4}
	ADDW ^{Note 1}	(XCHW)	XCHW	XCHW	XCHW					SHLW	INCW
		(ADDW)Note 1	ADDWNote 1	ADDWNote 1	ADDWNote 1						DECW
saddrp	MOVW	(MOVW)Note 3	MOVW	MOVW							INCW
	ADDW ^{Note 1}	(ADDW)Note 1	ADDW ^{Note 1}	XCHW							DECW
				ADDWNote 1							
sfrp	MOVW	MOVW	MOVW								PUSH
	ADDW ^{Note 1}	(ADDW)Note 1	ADDWNote 1								POP
!addr16	MOVW	(MOVW)	MOVW						MOVTBLW		
!!addr24											
mem		MOVW									
[saddrp]											
[%saddrg]											
PSW											PUSH
											POP
SP	ADDWG										
	SUBWG										
post											PUSH
											POP
											PUSHU
											POPU
[TDE+]		(MOVW)						SACW			
byte											MACW
											MACSW

Notes 1. The operands of SUBW and CMPW are the same as those of ADDW.

- 2. Either the second operand is not used, or the second operand is not an operand address.
- 3. The code length of some instructions having saddrp2 as saddrp in this combination is short.
- 4. The operands of MULUW and DIVUX are the same as those of MULW.

(3) 24-bit instructions (The instructions in parentheses are combinations realized by describing WHL as rg)

MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 14-3. Instruction List by 24-Bit Addressing

Second Operand	#imm24	WHL	rg	saddrg	!!addr24	mem1	[%saddrg]	SP	None ^{Note}
			rg'						
First Operand									
WHL	(MOVG)	(MOVG)	(MOVG)	(MOVG)	(MOVG)	MOVG	MOVG	MOVG	
	(ADDG)	(ADDG)	(ADDG)	ADDG					
	(SUBG)	(SUBG)	(SUBG)	SUBG					
rg	MOVG	(MOVG)	MOVG	MOVG	MOVG				INCG
	ADDG	(ADDG)	ADDG						DECG
	SUBG	(SUBG)	SUBG						PUSH
									POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddrg]	·	MOVG							
SP	MOVG	MOVG							INCG
									DECG

Note Either the second operand is not used, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 14-4. Instruction List by Bit Manipulation Instruction Addressing

Second Operand	CY	saddr.bit sfr.bit	/saddr.bit /sfr. bit	None ^{Note}
		A.bit X.bit	/A.bit /X.bit	
		PSWL.bit PSWH.bit	/PSWL.bit /PSWH.bit	
		mem2.bit	/mem2.bit	
First Operand		!addr16.bit !!addr24.bit	/!addr16.bit /!!addr24.bit	
CY		MOV1	AND1	NOT1
		AND1	OR1	SET1
		OR1		CLR1
		XOR1		
saddr.bit	MOV1			NOT1
sfr.bit				SET1
A.bit				CLR1
X.bit				BF
PSWL.bit				вт
PSWH.bit				BTCLR
mem2.bit				BFSET
!addr16.bit				
!!addr24.bit				

Note Either the second operand is not used, or the second operand is not an operand address.

(5) Call and return/branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 14-5. Instruction List by Call and Return/Branch Instruction Addressing

Operand of Instruction	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Address												
Basic instruction	BC ^{Note}	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALLF	CALLF	BRKCS	BRK
	BR	BR	BR	BR	BR	BR	BR	BR				RET
			RETCS									RETI
			RETCSB									RETB
Compound instruction	BF											
	ВТ											
	BTCLR											
	BFSET											
	DBNZ											

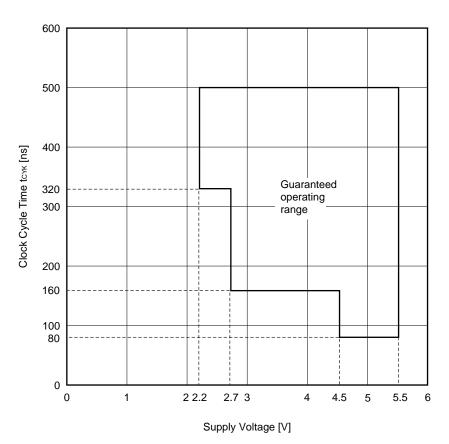
Note The operands of BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as those of BC.

(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

15. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)


Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +6.5	V
	AVDD			-0.3 to V _{DD} + 0.3	V
	AVss			-0.3 to Vss + 0.3	V
	AV _{REF0}	A/D converter ref	erence voltage input	-0.3 to V _{DD} + 0.3	V
	AV _{REF1}	D/A converter ref	erence voltage input	-0.3 to V _{DD} + 0.3	V
Input voltage	V _{I1}	Other than P90 to	o P95	-0.3 to V _{DD} + 0.3	V
	Vı2	P90 to P95	N-ch open drain	-0.3 to +12	V
Analog input voltage	Van	Analog input pin		AVss - 0.3 to AVREF0 + 0.3	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Output current, low	loL	Per pin		15	mA
		Total of P2, P4 to	p P8	75	mA
		Total of P0, P3, I	P9, P10, P12, P13	75	mA
Output current, high	Іон	Per pin		-10	mA
		Total of P2, P4 to	P8	-50	mA
		Total of P0, P3, I	P9, P10, P12, P13	-50	mA
Operating ambient temperature	ТА			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Operating Conditions

- Operating ambient temperature (T_A): −40 to +85°C
- Power supply voltage and clock cycle time: see Figure 15-1

Figure 15-1. Power Supply Voltage and Clock Cycle Time

CAPACITANCE (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сι	Unmeasured pins returned to 0 V.	Other than Port 9			15	pF
			Port 9			20	pF
Output capacitance	Со		Other than Port 9			15	pF
			Port 9			20	pF
I/O capacitance	Сю		Other than Port 9			15	pF
			Port 9			20	pF

Main System Clock Oscillator Characteristics (T_A = −40 to +85°C)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator or crystal	X2 X1 Vss	Oscillation frequency (fx)	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	2		12.5	MHz
resonator	conator		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.5~\textrm{V}$	2		6.25	
			$2.2 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	2		3	
External		X1 input frequency	$4.5~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	2		25	MHz
clock		(fx)	2.7 V ≤ V _{DD} < 4.5 V	2		12.5	
	X2 X1		2.2 V ≤ V _{DD} < 2.7 V	2		6.25	
	μPD74HCU04	X1 input high-/low-level width (twxH, twxL)		15		250	ns
		X1 input rise/fall	4.5 V ≤ V _{DD} ≤ 5.5 V	0		5	ns
		time (txr, txr)	$2.7 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	0		10	
			$2.2 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0		20	

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- . Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always make the ground point of the oscillator capacitor the same potential as Vss.
- . Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- ★ Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics (T_A = -40 to +85°C)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	Vss XT2 XT1	Oscillation frequency (fxT)		32	32.768	35	kHz
	 	Oscillation stabilization time ^{Note}	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		1.2	2	s
			2.2 V ≤ V _{DD} < 4.5 V			10	
External clock	XT2 XT1	XT1 input frequency (fxT)		32		35	kHz
	μPD74HCU04	XT1 input high-/low-level width (txth, txtl)		5		15	μs

Note Time required to stabilize oscillation after the power supply voltage (VDD) is applied.

- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - · Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - . Do not ground the capacitor to a ground pattern through which a high current flows.
 - · Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- * Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 2.2 to 5.5 V, Vss = AVss = 0 V) (1/2)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL1	Note 1		0		0.3V _{DD}	V
	VIL2	Total for P00 to P06, P20, P2 P72, P100 to P103, RESET	22, P33, P34, P70,	0		0.2V _{DD}	V
	V _{IL3} P90 to P95 (N-ch open drain)		0		0.3V _{DD}	V	
	VIL4	Total for P10 to P17, P130, P131		0		0.3V _{DD}	V
	VIL5	Total for X1, X2, XT1, XT2		0		0.2V _{DD}	V
	VIL6	P25, P27		0		0.3V _{DD}	V
Input voltage, high	V _{IH1}	Note 1		0.7V _{DD}		V _{DD}	V
	V _{IH2}	Total for P00 to P06, P20, P2 P72, P100 to P103, RESET	22, P33, P34, P70,	0.8V _{DD}		V _{DD}	V
	VIH3	P90 to P95 (N-ch open drain)	0.7V _{DD}		12	V	
	V _{IH4}	Total for P10 to P17, P130, P	0.7V _{DD}		V _{DD}	V	
	V _{IH5} Total for X1, X2, XT1, XT2			0.8V _{DD}		V _{DD}	V
	VIH6	P25, P27		0.7V _{DD}		V _{DD}	V
Output voltage, low	Vol1	For pins other than P40 to P47, P50 to P57, P90 to P95 lo _L = 1.6 mA ^{Note 2}	V _{DD} = 4.5 to 5.5 V			0.4	V
		Total for P40 to P47, P50 to P57 IoL = 8 mA ^{Note 2}	V _{DD} = 4.5 to 5.5 V			1.0	V
		P90 to P95 lo _L = 15 mA ^{Note 2}	V _{DD} = 4.5 to 5.5 V		0.8	2.0	V
	V _{OL2}	IoL = 400 μA ^{Note 2}				0.5	V
Output voltage, high	V _{OH1}	Iон = -1 mA ^{Note 2}	V _{DD} = 4.5 to 5.5 V	VDD - 1.0			V
		$I_{OL} = -100 \ \mu A^{Note 2}$		VDD - 0.5			V
Input leakage current, low	ILIL1	Vin = 0 V	Except X1, X2, XT1, XT2			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
Input leakage current, high	Ішн1	VIN = VDD	Except X1, X2, XT1, XT2			3	μΑ
	ILIH2		X1, X2, XT1, XT2			20	μΑ
Output leakage current, low	ILOL1	Vout = 0 V				-3	μΑ
Output leakage current, high	I LOH1	Vout = Vdd				3	μΑ

Notes 1. P21, P23, P24, P26, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P71, P80 to P87, P120 to P127

2. Per pin

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 2.2 to 5.5 V, Vss = AVss = 0 V) (2/2)

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit
Supply current	I _{DD1}	Operation	fxx = 12.5 MHz		20	40	mA
		mode	fxx = 6 MHz, 2.7 V ≤ V _{DD} ≤ 3.3 V		8	17	mA
			fxx = 3 MHz, 2.2 V ≤ Vpp < 2.7 V		4	8	mA
	I _{DD2}	HALT mode	fxx = 12.5 MHz		8	40 mA 17 mA	
			fxx = 6 MHz, 2.7 V ≤ VDD ≤ 3.3 V		3	8	mA
			$fxx = 3 \text{ MHz}, 2.2 \text{ V} \le \text{Vpd} < 2.7 \text{ V}$		1.3	3.5	mA
	Іррз	IDLE mode	fxx = 12.5 MHz		1	2.5	mA
			$fxx = 6 \text{ MHz}, 2.7 \text{ V} \le V_{DD} \le 3.3 \text{ V}$		0.5 1.3		mA
			$fxx = 3 \text{ MHz}, 2.2 \text{ V} \le \text{Vpd} < 2.7 \text{ V}$		0.3	0.9	mA
	I _{DD4}	Operation	fxx = 32 kHz		100	200	
		mode ^{Note}	$fxx = 32 \text{ kHz}, 2.7 \text{ V} \le \text{Vpd} \le 3.3 \text{ V}$		55	110	μΑ
			$fxx = 32 \text{ kHz}, 2.2 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$		50	100	μΑ
	I _{DD5}	HALT	fxx = 32 kHz		80	160	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, 2.7 \text{ V} \le \text{Vpd} \le 3.3 \text{ V}$		40	80	μΑ
			$fxx = 32 \text{ kHz}, 2.2 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$		35	70	μΑ
	I _{DD6}	IDLE	fxx = 32 kHz		75	150	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, 2.7 \text{ V} \le V_{DD} \le 3.3 \text{ V}$		35	70	μΑ
			$fxx = 32 \text{ kHz}, 2.2 \text{ V} \le V_{DD} < 2.7 \text{ V}$		30	60	μΑ
Data retention voltage	VDDDR	HALT, IDLE	modes	2.2		5.5	V
Data retention current	IDDDR	STOP mode	VDD = 2.2 V		2	10	μΑ
			V _{DD} = 4.5 to 5.5 V		10	50	μΑ
Pull-up resistor	RL	Vin = 0 V		10	30	100	kΩ

Note When main system clock is stopped

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics (TA = -40 to +85°C, VDD = AVDD = 2.2 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	tсүк	4.5 V ≤ V _{DD} ≤ 5.5 V	80			ns
		2.7 V ≤ V _{DD} < 4.5 V	160			ns
		2.2 V ≤ V _{DD} < 2.7 V	320			ns
Address setup time (to ASTB↓)	tsast	V _{DD} = 5.0 V	(0.5 + a) T – 11			ns n
		VDD = 3.0 V	(0.5 + a) T – 15			ns
Address hold time (from ASTB↓)	t HSTLA	V _{DD} = 5.0 V	0.5T - 19			ns
		V _{DD} = 3.0 V	0.5T - 24			ns
ASTB high-level width	twsтн	V _{DD} = 5.0 V	(0.5 + a) T – 17			ns
		V _{DD} = 3.0 V	(0.5 + a) T – 40			ns
Address hold time (from RD↑)	thra	V _{DD} = 5.0 V	0.5T - 14			ns
		VDD = 3.0 V	0.5T - 14			ns
Delay time from address to $\overline{\text{RD}} \downarrow$	tdar	V _{DD} = 5.0 V	(1 + a) T – 24			ns
		V _{DD} = 3.0 V	(1 + a) T – 24			ns
Address float time (from $\overline{RD} \downarrow$)	t FRA		0			ns
Data input time from address	tdaid	V _{DD} = 5.0 V			(2.5 + a + n) T – 37	ns
		V _{DD} = 3.0 V			(2.5 + a + n) T - 52	ns n
Data input time from ASTB↓	tostid	V _{DD} = 5.0 V			(2 + n) T – 35	ns
		V _{DD} = 3.0 V			(2 + n) T - 50	ns
Data input time from RD↓	torid	V _{DD} = 5.0 V			(1.5 + n) T – 40	ns
		V _{DD} = 3.0 V			(1.5 + n) T - 50	ns
Delay time from ASTB \downarrow to $\overline{\text{RD}}\downarrow$	tostr	VDD = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T – 9			ns
Data hold time (from RD↑)	t HRID		0			ns
Address active time from RD↑	tdra	V _{DD} = 5.0 V	0.5T - 2			ns
		V _{DD} = 3.0 V	0.5T - 12			ns
Delay time from RD↑ to ASTB↑	tdrst	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
RD low-level width	twrl	V _{DD} = 5.0 V	(1.5 + n) T – 25			ns
		V _{DD} = 3.0 V	(1.5 + n) T – 30			ns
Delay time from address to $\overline{\mathrm{WR}} \downarrow$	tdaw	V _{DD} = 5.0 V	(1 + a) T – 24			ns
		V _{DD} = 3.0 V	(1 + a) T – 24			ns
Address hold time (from WR↑)	thwa	V _{DD} = 5.0 V	0.5T - 14			ns
		V _{DD} = 3.0 V	0.5T – 14			ns
Delay time from ASTB↓ to data	tostod	V _{DD} = 5.0 V			0.5T + 15	ns
output		V _{DD} = 3.0 V			0.5T + 20	ns

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)

a: 1 (during address wait), otherwise 0

n: Number of waits $(n \ge 0)$

AC Characteristics

(1) Read/write operation (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data output delay time WR↓	towod			10	62	ns
Delay time from ASTB↓ to WR↓	tostw	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
Data setup time (to WR↑)	tsodwr	V _{DD} = 5.0 V	(1.5 + n) T – 20			ns
		V _{DD} = 3.0 V	(1.5 + n) T – 25			ns
Data hold time (from WR↑)	thwod	V _{DD} = 5.0 V	0.5T - 14			ns
		V _{DD} = 3.0 V	0.5T - 14			ns
ASTB↑ delay time (from WR↑)	towst	V _{DD} = 5.0 V	0.5T - 9			ns
		V _{DD} = 3.0 V	0.5T - 9			ns
WR low-level width	twwL	V _{DD} = 5.0 V	(1.5 + n) T – 25			ns
		V _{DD} = 3.0 V	(1.5 + n) T – 30			ns

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)

a: 1 (during address wait), otherwise 0

n: Number of waits $(n \ge 0)$

AC Characteristics

(2) External wait timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input time from address to	t DAWT	V _{DD} = 5.0 V			(2 + a) T – 40	ns
WAIT↓		V _{DD} = 3.0 V			(2 + a) T - 60	ns
Input time from ASTB↓ to	t DSTWT	V _{DD} = 5.0 V			1.5T – 40	ns
WAIT↓		V _{DD} = 3.0 V			1.5T – 60	ns
Hold time from ASTB↓ to	t HSTWT	VDD = 5.0 V	(0.5 + n) T + 5			ns
WAIT		V _{DD} = 3.0 V	(0.5 + n) T + 10			ns
Delay time from ASTB↓ to	tostwth	V _{DD} = 5.0 V			(1.5 + n) T - 40	ns
WAIT↑		V _{DD} = 3.0 V			(1.5 + n) T - 60	ns
Input time from $\overline{RD}\downarrow$ to $\overline{WAIT}\downarrow$	t DRWTL	V _{DD} = 5.0 V			T – 40	ns
		V _{DD} = 3.0 V			T – 60	ns
Hold time from RD↓ to WAIT↓	thrwt	V _{DD} = 5.0 V	nT + 5			ns
		V _{DD} = 3.0 V	nT + 10			ns
Delay time from RD↓ to WAIT↑	t DRWTH	V _{DD} = 5.0 V			(1 + n) T - 40	ns
		V _{DD} = 3.0 V			(1 + n) T - 60	ns
Input time from WAIT↑ to data	towtid	V _{DD} = 5.0 V			0.5T - 5	ns
		V _{DD} = 3.0 V			0.5T - 10	ns
Delay time from WAIT↑ to RD↑	towtr	V _{DD} = 5.0 V	0.5T			ns
		V _{DD} = 3.0 V	0.5T			ns
Delay time from WAIT↑ to WR↑	t DWTW	V _{DD} = 5.0 V	0.5T			ns
		V _{DD} = 3.0 V	0.5T			ns
Input time from WR↓ to WAIT↓	t DWWTL	V _{DD} = 5.0 V			T – 40	ns
		V _{DD} = 3.0 V			T – 60	ns
Hold time from WR↓ to WAIT	tнwwт	V _{DD} = 5.0 V	nT + 5			ns
		V _{DD} = 3.0 V	nT + 10			ns
Delay time from WR↓ to WAIT↑	towwth	V _{DD} = 5.0 V			(1 + n) T - 40	ns
		V _{DD} = 3.0 V			(1 + n) T - 60	ns

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)

a: 1 (during address wait), otherwise 0

n: Number of waits $(n \ge 0)$

Serial Operation (TA = -40 to +85°C, VDD = AVDD = 2.2 to 5.5 V, Vss = AVss = 0 V)

(a) 3-wire serial I/O mode (SCK: internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
			3,200			ns
SCK high-/low-level width	tĸнı,	2.7 V ≤ V _{DD} ≤ 5.5 V	350			ns
	t _{KL1}		1,500			ns
SI setup time (to SCK↑)	tsik1	2.7 V ≤ V _{DD} ≤ 5.5 V	10			ns
			30			ns
SI hold time (from SCK↑)	tksi1		40			ns
SO output delay time (from SCK↓)	tkso1				30	ns

(b) 3-wire serial I/O mode (SCK: external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2	2.7 V ≤ V _{DD} ≤ 5.5 V	800			ns
			3,200			ns
SCK high-/low-level width	t KH2,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	400			ns
	t _{KL2}		1,600			ns
SI setup time (to SCK↑)	tsık2	2.7 V ≤ V _{DD} ≤ 5.5 V	10			ns
			30			ns
SI hold time (from SCK↑)	tksi2		40			ns
SO output delay time (from SCK↓)	tkso2				30	ns

(c) UART mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	4.5 V ≤ V _{DD} ≤ 5.5 V	417			ns
		2.7 V ≤ V _{DD} < 4.5 V	833			ns
			1,667			ns
ASCK high-/low-level width	t кнз,	4.5 V ≤ V _{DD} ≤ 5.5 V	208			ns
	tкLз	2.7 V ≤ V _{DD} < 4.5 V	416			ns
			833			ns

(d) I^2C bus mode (μ PD784218Y only)

	Parameter	Symbol	Standar	d Mode	High-Spe	eed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 cl	ock frequency	fclk	0	100	0	400	kHz
Bus free	e time (between stop	t BUF	4.7		1.3		μs
and star	t conditions)						
Hold tim	eNote1	thd:sta	4.0		0.6		μs
Low-leve	el width of SCL0 clock	tLow	4.7		1.3		μs
High-lev	rel width of SCL0 clock	tніgн	4.0		0.6	_	μs
Setup tii	me of start/restart	tsu:sta	4.7		0.6		μs
conditio	ns						
Data	When using CBUS-	thd : dat	5.0				μs
hold	compatible master						
time	When using I ² C bus		O ^{Note 2}		ONote 2	0.9Note 3	μs
Data se	tup time	tsu: dat	250		100Note 4		ns
Rise tim	e of SDA0 and SCL0	tr		1,000	20 + 0.1Cb ^{Note 5}	300	ns
signals							
Fall time	e of SDA0 and SCL0	t⊧		300	20 + 0.1Cb ^{Note 5}	300	ns
signals							
Setup tii	me of stop condition	tsu:sто	4.0		0.6		μs
	idth of spike restricted	tsp	_		0	50	ns
by input							
	pacitance of each bus	Cb		400		400	pF
line							

- **Notes 1.** For the start condition, the first clock pulse is generated after the hold time.
 - 2. To fill the undefined area of the SCL0 falling edge, it is necessary for the device to provide an internal SDA0 signal (on V_{IHmin.}) with at least 300 ns of hold time.
 - 3. If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time thd: DAT needs to be satisfied.
 - **4.** The high-speed mode I²C bus can be used in a standard mode I²C bus system. In this case, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low state hold time $tsu: DAT \ge 250 \ ns$
 - If the device extends the SCL0 signal low state hold time
 Be sure to transmit the data bit to the SDA0 line before the SCL0 line is released
 (t_{Rmax.} + t_{SU:DAT} = 1,250 ns by standard mode I²C bus specification)
 - **5.** Cb: total capacitance per one bus line (unit: pF)

Other Operations (TA = $-40 \text{ to } +85^{\circ}\text{C}$, VDD = AVDD = 2.2 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high-/low-level width	twnil		10			μs
	twnih					
INTP input high-/low-level width	twitl	INTP0 to INTP6	10			μs
	twiтн					
RESET high-/low-level width	twrsl		10			μs
	twrsh					

Clock Output Operation (TA = -40 to +85°C, VDD = AVDD = 2.2 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PCL cycle time	tcycL	V _{DD} = 4.5 to 5.5 V, nT	80		31,250	ns
PCL high-/low-level width	tcll tclh	V _{DD} = 4.5 to 5.5 V, 0.5T – 10	30		15,615	ns
PCL rise/fall time	tclr	4.5 V ≤ V _{DD} ≤ 5.5 V			5	ns
	tclf	2.7 V ≤ V _{DD} < 4.5 V			10	ns
		2.2 V ≤ V _{DD} < 2.7 V			20	ns

Remark T: tcyk = 1/fxx (fxx: main system clock frequency)

n: Divided frequency ratio set by software in the CPU

When using the main system clock: n = 1, 2, 4, 8, 16, 32, 64, 128
When using the subsystem clock: n = 1

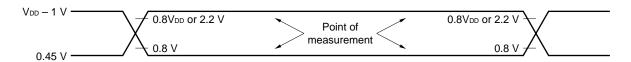
A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = 2.2 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		2.7 V ≤ AV _{REF0} ≤ AV _{DD}			±1.2	%
		2.2 V ≤ AV _{REF0} < 2.7 V (only when AV _{REF0} = AV _{DD})			±1.6	%
Conversion time	tconv		14		144	μs
Sampling time	tsamp		24/fxx			μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		2.2		AV _{DD}	V
Resistance between AVREFO and AVss	RAVREFO			29.4		kΩ

Note Excludes quantization error ($\pm 1/2$ LSB).

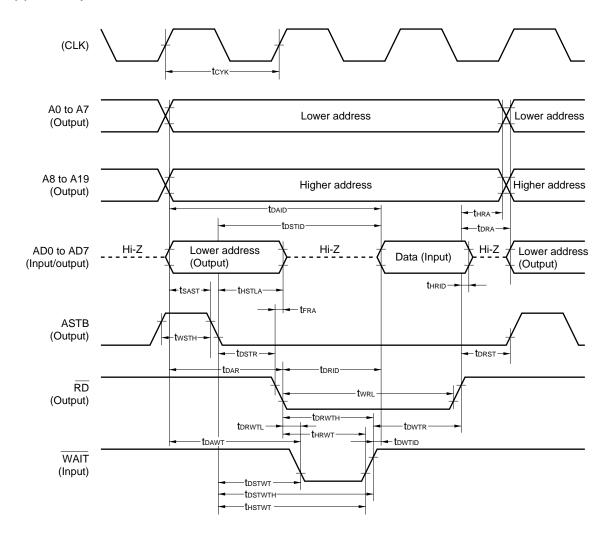
Remark fxx: Main system clock frequency

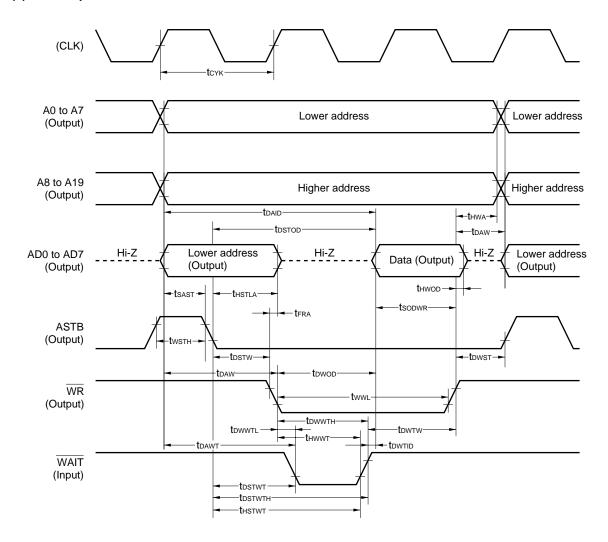
D/A Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 2.2 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)


Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Total error		R = 2 MΩ, 2.2 V < AV _F	REF1 ≤ 5.5 V			±1.2	%
		R = 4 MΩ, 2.2 V < AV _F	REF1 ≤ 5.5 V			±0.8	%
		R = 10 MΩ, 2.2 V < A\	/ _{REF1} ≤ 5.5 V			±0.6	%
Settling time		Load conditions:	4.5 V ≤ AV _{REF1} ≤ 5.5 V			10	μs
		C = 30 pF	2.7 V ≤ AVREF1 < 4.5 V			15	μs
			2.2 V ≤ AVREF1 < 2.7 V			20	μs
Output resistance	Ro	DACS0, 1 = 55 H			5.3		kΩ
Reference voltage	AV _{REF1}			2.2		V _{DD}	V
AVREF1 current	Alref1	For only 1 channel				2.5	mA

Data Retention Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 2.2 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	V _{DDDR}	STOP mode	2.2		5.5	V
Data retention current	IDDDR	V _{DDDR} = +4.5 to 5.5 V		10	50	μΑ
		VDDDR = +2.5 V		2	10	μΑ
V _{DD} rise time	t RVD		200			μs
V _{DD} fall time	t FVD		200			μs
V _{DD} hold time (from STOP mode setting)	thvd		0			ms
STOP release signal input time	t DREL		0			ms
Oscillation stabilization wait time	twait	Crystal resonator	30			ms
		Ceramic resonator	5			ms
Input voltage, low	VIL	RESET, P00/INTP0 to P06/INTP6	0		0.1Vdddr	V
Input voltage, high	Vін		0.9Vdddr		VDDDR	V

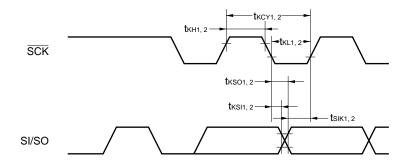

AC Timing Measurement Points


Timing Waveforms

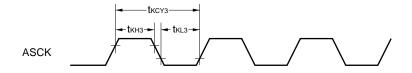
(1) Read operation

Remark Signals are output from A0 to A7 while ports 80 to 87 are not being used.

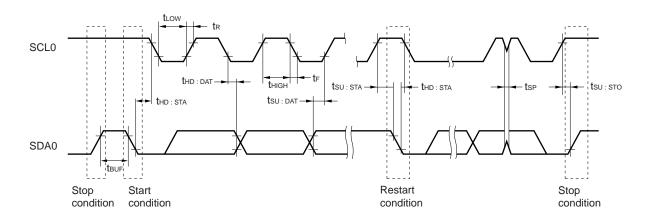
(2) Write operation



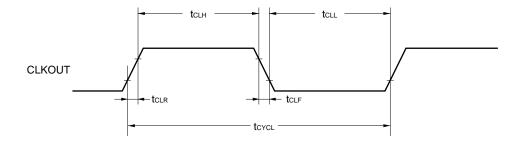
Remark Signals are output from A0 to A7 while ports 80 to 87 are not being used.



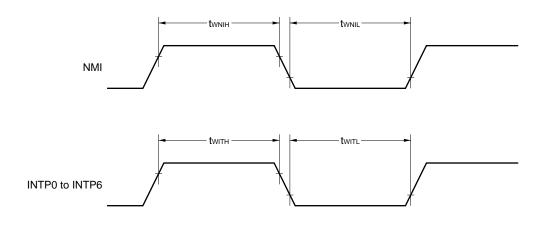
Serial Operation

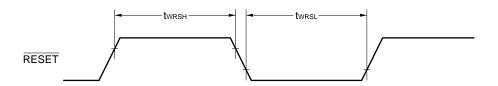

(1) 3-wire serial I/O mode

(2) UART mode

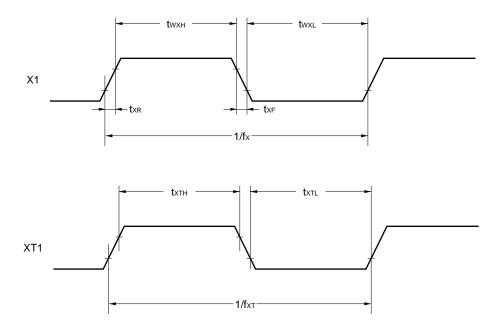


(3) I²C bus mode (μ PD784218Y Subseries only)

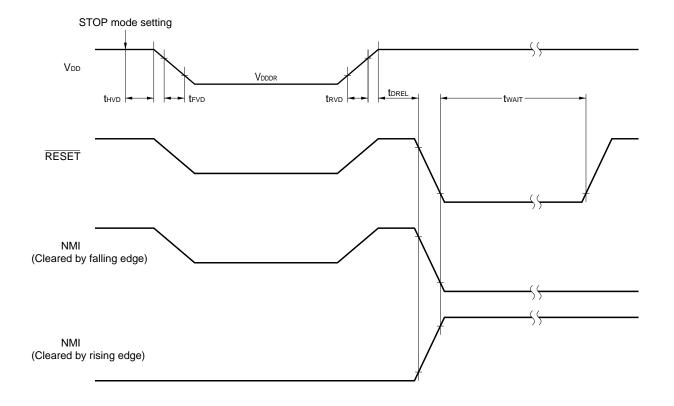



Clock Output Timing

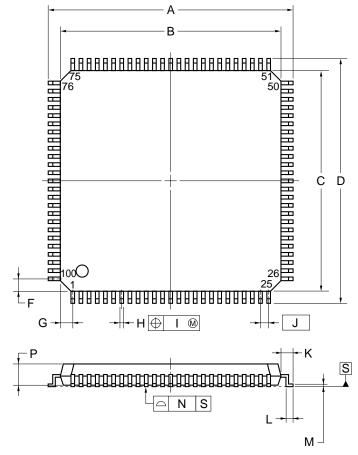
Interrupt Input Timing



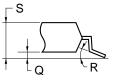
Reset Input Timing



Clock Timing



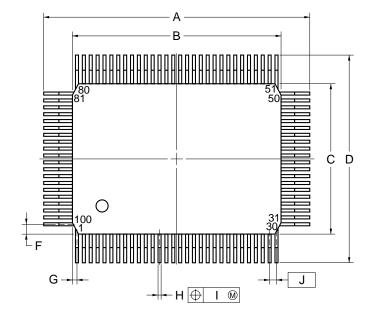
Data Retention Characteristics



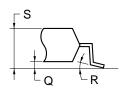
★ 16. PACKAGE DRAWINGS

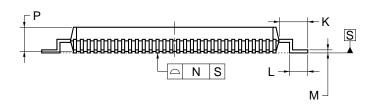
100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

detail of lead end


NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
Α	16.00±0.20
В	14.00±0.20
	14.00±0.20
D	16.00±0.20
F	1.00
G	1.00
Н	$0.22^{+0.05}_{-0.04}$
I	0.08
J	0.50 (T.P.)
K	1.00±0.20
L	0.50±0.20
М	$0.17^{+0.03}_{-0.07}$
N	0.08
P	1.40±0.05
Q	0.10±0.05
R	3°+7°
S	1.60 MAX.
	S100GC-50-8EU-1


Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

100-PIN PLASTIC QFP (14x20)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	23.6±0.4
В	20.0±0.2
С	14.0±0.2
D	17.6±0.4
F	0.8
G	0.6
Н	0.30±0.10
I	0.15
J	0.65 (T.P.)
K	1.8±0.2
L	0.8±0.2
М	$0.15^{+0.10}_{-0.05}$
Ν	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.
	100CE 65 2D 41

P100GF-65-3BA1-4

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

★ 17. RECOMMENDED SOLDERING CONDITIONS

The μ PD784218 should be soldered and mounted under the following recommended conditions. For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Caution Soldering conditions for the μ PD784218YGC- $\times\times$ -8EU and μ PD784218YGF- $\times\times$ -3BA are undetermined because these products are under development.

Table 17-1. Soldering Conditions for Surface Mount Type

(1) μ PD784218GC- $\times\times$ -8EU: 100-pin plastic LQFP (Fine pitch) (14 \times 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP-15-107-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD784218GF- $\times\times$ -3BA: 100-pin plastic QFP (14 \times 20 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD784218. Also refer to (5) Cautions on Using Development Tools.

(1) Language Processing Software

RA78K4	Assembler package common to 78K/IV Series
CC78K4	C compiler package common to 78K/IV Series
DF784218	Device file common to μPD784218, 784218Y Subseries
CC78K4-L	C compiler library source file common to 78K/IV Series

(2) Flash Memory Writing Tools

Flashpro II (Part No.: FL-PR2), Flashpro III (Part No.: FL-PR3, PG-FP3)	Dedicated flash programmer for microcontroller incorporating flash memory
FA-100GF	Adapter for writing 100-pin plastic QFP (GF-3BA type) flash memory.
FA-100GC	Adapter for writing 100-pin plastic LQFP (GC-8EU type) flash memory.

(3) Debugging Tools

• When IE-78K4-NS in-circuit emulator is used

IE-78K4-NS	In-circuit emulator common to 78K/IV Series
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-C	Interface adapter used when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and cable when notebook PC is used as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT TM or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Interface adapter when using PC that incorporates PCI bus as host machine
IE-784225-NS-EM1	Emulation board to emulate μPD784218, 784218Y Subseries
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)
NP-100GC	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the NP-100GC and a target system board on which a 100-pin plastic LQFP (GC-8EU type) can be mounted
ID78K4-NS	Integrated debugger for IE-78K4-NS
SM78K4	System simulator common to 78K/IV Series
DF784218	Device file common to μPD784218, 784218Y Subseries

Data Sheet U12304EJ2V0DS00

• When IE-784000-R in-circuit emulator is used

IE-784000-R	In-circuit emulator common to 78K/IV Series
IE-70000-98-IF-C	Interface adapter used when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Interface adapter when using PC that incorporates PCI bus as host machine
IE-78000-R-SV3	Interface adapter and cable used when EWS is used as host machine
IE-784225-NS-EM1 IE-784218-R-EM1	Emulation board to emulate μ PD784218, 784218Y Subseries
IE-784000-R-EM	Emulation board common to 78K/IV Series
IE-78K4-R-EX3	Emulation probe conversion board necessary when using IE-784225-NS-EM1 on IE-784000-R. Not necessary when IE-784216-R-EM1 is used.
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EP-78064GC-R	Emulation probe for 100-pin plastic LQFP (GC-8EU type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
TGC-100SDW	Conversion adapter to connect the NP-100GC and a target system board on which a 100-pin plastic LQFP (GC-8EU type) can be mounted
ID78K4	Integrated debugger for IE-784000-R
SM78K4	System simulator common to 78K/IV Series
DF784218	Device file common to μPD784218, 784218Y Subseries

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV Series
MX78K4	OS for 78K/IV Series

(5) Cautions on Using Development Tools

- The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784218.
- The CC78K4 and RX78K/IV are used in combination with the RA78K4 and DF784218.
- The FL-PR2, FL-PR3, FA-100GF, FA-100GC, NP-100GF, and NP-100GC are products made by Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-44-822-3813).
- The TGC-100SDW is a product made by TOKYO ELETECH CORPORATION.
- For further information, contact Daimaru Kogyo, Ltd.
 Tokyo Electronic Division (TEL: +81-3-3820-7112)
 Osaka Electronic Division (TEL: +81-6-6244-6672)
- For third-party development tools, see the 78K/IV Series Selection Guide (U13355E).
- The host machine and OS suitable for each software are as follows:

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows]	HP9000 series 700 TM [HP-UX TM]
	IBM PC/AT and compatibles	SPARCstation TM [SunOS TM , Solaris TM]
Software	[Japanese/English Windows]	NEWS TM (RISC) [NEWS-OS TM]
RA78K4	\sqrt{Note}	√
CC78K4	\sqrt{Note}	V
ID78K4-NS	V	_
ID78K4	V	√
SM78K4	V	_
RX78K/IV	√Note	V
MX78K4	√Note	√

Note DOS-based software

APPENDIX B RELATED DOCUMENTS

Documents Related to Devices

Document Name	Document No.	
	Japanese	English
μPD784218, 784218Y Data Sheet	U12304J	This document
μPD78F4218, 78F4218Y Preliminary Product Information	U12440J	U12440E
μPD784218, 784218Y Subseries User's Manual Hardware	U12970J	U12970E
78K/IV Series User's Manual Instructions	U10905J	U10905E
78K/IV Series Instruction Table	U10594J	_
78K/IV Series Instruction Set	U10595J	_
78K/IV Series Application Note Software Fundamentals	U10095J	U10095E

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.	
		Japanese	English
RA78K4 Assembler Package	Language	U11162J	U11162E
	Operation	U11334J	U11334E
RA78K Structured Assembler Preprocessor		U11743J	U11743E
CC78K4 C Compiler	Language	U11571J	U11571E
	Operation	U11572J	U11572E
IE-78K4-NS		U13356J	U13356E
IE-784000-R		U12903J	U12903E
IE-784218-R-EM1		U12155J	U12155E
IE-784225-NS-EM1		U13742J	U13742E
EP-78064		EEU-934	EEU-1469
SM78K4 System Simulator Windows Based	Reference	U10093J	U10093E
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
ID78K4-NS Integrated Debugger PC Based	Reference	U12796J	U12796E
ID78K4 Integrated Debugger Windows Based	Reference	U10440J	U10440E
ID78K4 Integrated Debugger HP-UX, SunOS, NEWS-OS Based	Reference	U11960J	U11960E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Fundamentals	U10603J	U10603E
	Installation	U10604J	U10604E
	Debugger	U10364J	_
78K/IV Series OS MK78K4	Fundamentals	U11779J	_

Other Related Documents

Document Name	Document No.	
	Japanese	English
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Guide to Microcontroller-Related Products by Third Parties	U11416J	-

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Data Sheet U12304EJ2V0DS00

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corporation.

Windows is a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.