VOLTAGE: 50 TO 1000V CURRENT: 2.0A

FEATURES

- Ideal for surface mount pick and place application
- Low profile package
- Built-in strain relief
- High surge capability
- Glass passivated chip
- Ultra fast recovery for high efficiency
- High temperature soldering guaranteed:
$260^{\circ} \mathrm{C} / 10 \mathrm{sec} /$ at terminal

MECHANICAL DATA

- Terminal: Plated leads solderable per MIL-STD 202E, method 208C
- Case: Molded with UL-94 Class V-O recognized flame retardant epoxy
- Polarity: Color band denotes cathode

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
(Single-phase, half-wave, 60 Hz , resistive or inductive load rating at $25^{\circ} \mathrm{C}$, unless otherwise stated, for capacitive load, derate current by 20%)

RATINGS	SYMBOL	$\begin{aligned} & \hline \text { US } \\ & \text { 2A } \end{aligned}$	$\begin{aligned} & \hline \text { US } \\ & \text { 2B } \end{aligned}$	$\begin{aligned} & \hline \text { US } \\ & \text { 2D } \end{aligned}$	$\begin{aligned} & \hline \text { US } \\ & \text { 2G } \end{aligned}$	$\begin{aligned} & \hline \text { US } \\ & 2 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \hline \text { US } \\ & 2 K \end{aligned}$	$\begin{aligned} & \hline \text { US } \\ & \text { 2M } \end{aligned}$	UNITS
Maximum Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	$V_{D C}$	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current $\left(\mathrm{T}_{\mathrm{L}}=90^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {f(AV) }}$				2.0				A
Peak Forward Surge Current (8.3ms single half sine-wave superimposed on rated load)	$\mathrm{I}_{\text {FSM }}$				50				A
Maximum Instantaneous Forward Voltage (at rated forward current)	V_{F}		1.0		1.4		1.7		V
Maximum DC Reverse Current $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (at rated DC blocking voltage) $\mathrm{T}_{a}=100^{\circ} \mathrm{C}$	$I_{\text {R }}$				$\begin{aligned} & \hline 5.0 \\ & 350 \\ & \hline \end{aligned}$				$\begin{array}{r} \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{array}$
Maximum Reverse Recovery Time (Note 1)	trr						75		nS
Typical Junction Capacitance (Note 2)	C_{J}				25				pF
Typical Thermal Resistance (Note 3)	$\mathrm{R}_{\text {f }}(\mathrm{ja})$				20				${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage and Operation Junction Temperature	$\mathrm{T}_{\text {stG }}, \mathrm{T}_{\mathrm{J}}$				to +1				${ }^{\circ} \mathrm{C}$
	1. Reverse recovery condition $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~A}, \mathrm{Ir}=0.25 \mathrm{~A}$. 2. Measured at 1.0 MHz and applied voltage of $4.0 \mathrm{~V}_{\mathrm{dc}}$								

