November 1999 Revised March 2005

USB1T11A Universal Serial Bus Transceiver

FAIRCHILD

SEMICONDUCTOR®

USB1T11A Universal Serial Bus Transceiver

General Description

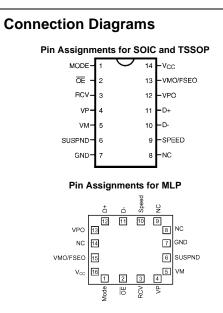
The USB1T11A is a one chip generic USB transceiver. It is designed to allow 5.0V or 3.3V programmable and standard logic to interface with the physical layer of the Universal Serial Bus. It is capable of transmitting and receiving serial data at both full speed (12Mbit/s) and low speed (1.5Mbit/s) data rates.

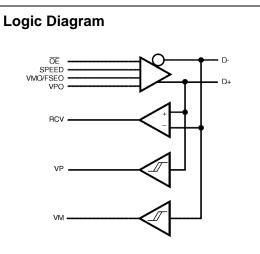
The input and output signals of the USB1T11A conform with the "Serial Interface Engine". Implementation of the Serial Interface Engine along with the USB1T11A allows the designer to make USB compatible devices with off-theshelf logic and easily modify and update the application.

Features

- Complies with Universal Serial Bus specification 1.1
- Utilizes digital inputs and outputs to transmit and receive USB cable data
- Supports 12Mbit/s "Full Speed" and 1.5Mbit/s "Low Speed" serial data transmission
- Compatible with the VHDL "Serial Interface Engine" from USB Implementers' Forum
- Supports single-ended data interface
- Single 3.3V supply
- ESD Performance: Human Body Model > 9.5 kV on D-, D+ pins only
- > 4 kV on all other pins
- 16-lead Pb-Free MLP package saves space

Ordering Code:


Order Number	Package Number	Package Description
USB1T11AM (Note 1)	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
USB1T11AM_NL (Note 2)	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
USB1T11ABQX	MLP16C	Pb-Free 16-Terminal Molded Leadless Package (MLP), JEDEC MO-220, 3mm square
USB1T11AMTC (Note 1)	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
USB1T11AMTC_NL (Note 2)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
USB1T11AMTCX_NL (Note 2)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Pb-Free package per JEDEC J-STD-020B.

Note 1: Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Note 2: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Please use order number as indicated.

The USB-IF Logos are trademarks of Universal Serial Bus Implementers Forum, Inc.

Pin Descriptions

Pin Name	I/O			Description				
RCV	0	Receive data. CMOS	level output for US	B differential input				
ŌĒ	Ι	Output Enable. Active active the transceiver		e transceiver to transmit da	ta on the bus. When not			
MODE	Ι	Mode. When left unco VMO/FSEO pin takes		ull-up transistor pulls it to EO (Force SEO).	V_{CC} and in this GND, the			
/ _{PO} , V _{MO} /F _{SEO}	I	Inputs to differential driver. (Outputs from SIE).						
		MODE	VPO	VMO/FSEO	RESULT			
		0	0	0	Logic "0"			
			0	1	SE0			
			1	0	Logic "1"			
			1	1	SEO			
		1	0	0	SE0			
			0	1	Logic "0"			
			1	0	Logic "1"			
			1	1	Illegal code			
V _P , V _M	0	Gated version of D- and D+. Outputs are logic "0" and logic "1". Used to detect single ended zero (SE0), error conditions, and interconnect speed. (Input to SIE).						
		VP	VM	RESULT				
		0	0	SE0				
		0	1	Low Speed				
		1	0	Full Speed				
		1	1	Error				
D+, D-	AI/O	Data+, Data Differer	tial data bus confo	orming to the Universal Se	rial Bus standard.			
SUSPND	Ι			ile the USB bus is inactive "0" state. Both D+ and D–				
SPEED	Ι	Edge rate control. Log Logic "0" operates edg		edge rates for "full speed".				
V _{CC}		3.0V to 3.6V power su	pply					
GND		Ground reference						

Functional Truth Table

Input		Input I/O		0	Outputs					
Mode	VPO	VMO/FSEO	OE	SUSPND	D+	D-	RCV	VP	V _M	Result
0	0	0	0	0	0	1	0	0	1	Logic 0
0	0	1	0	0	0	0	U	0	0	SEO
0	1	0	0	0	1	0	1	1	0	Logic 1
0	1	1	0	0	0	0	U	0	0	SEO
1	0	0	0	0	0	0	U	0	0	SEO
1	0	1	0	0	0	1	0	0	1	Logic 0
1	1	0	0	0	1	0	1	1	0	Logic 1
1	1	1	0	0	1	1	U	U	U	Illegal Coo
Х	Х	Х	1	0	Z	Z	U	U	U	D+/D- Hi-
Х	Х	Х	1	1	Z	Z	U	U	U	D+/D- Hi

3

X = Don't Care Z = 3-STATE U = Undefined State

USB1T11A

Absolute Maximum Ratings(Note 3)

	-
DC Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
V ₁ < 0	–50 mA
Input Voltage (V _I)	
(Note 4)	-0.5V to +5.5V
Input Voltage (V _{I/O})	-0.5V to V _{CC} + 0.5V
Output Diode Current (I _{OK})	
$V_{O} > V_{CC} \text{ or } V_{O} < 0$	±50 mA
Output Voltage (V _O)	
(Note 4)	-0.5V to V _{CC} + 0.5V
Output Source or Sink Current (I_O)	
VP.VM, RCV pins	
$V_{O} = 0$ to V_{CC}	±15 mA
Output Source or Sink Current (I _O)	
D+/D- pins	
$V_{O} = 0$ to V_{CC}	±50 mA
V _{CC} or GND Current (I _{CC} , I _{GND})	±100 mA
Storage Temperature (T _{STO})	-60°C to + 150°C

Recommended Operating Conditions

Supply Voltage V _{CC}	3.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Input Range for AI/O (V _{AI/O})	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Ambient Temperature	
in free air (T _{amb})	–40°C to +85°C

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristic tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

DC Electrical Characteristics (Digital Pins)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). $V_{CC} = 3.0V$ to 3.6V

				Limits		Unit
Symbol	Parameter	Test Conditions	Temp	+85°C		
			Min	Тур	Max	1
	INPUT LEVELS:	·	•			
VIL	LOW Level Input Voltage				0.8	V
VIH	HIGH Level Input Voltage		2.0			V
	OUTPUT LEVELS:	·	•			
V _{OL}	LOW Level Output Voltage	I _{OL} = 4 mA			0.4	V
		I _{OL} = 20 μA			0.1	Ň
V _{OH}	HIGH Level Output Voltage	I _{OH} = 4 mA	2.4			V
		I _{OH} = 20 μA	V _{CC} – 0.1			v
	LEAKAGE CURRENT:	•				
I _L	Input Leakage Current	V _{CC} = 3.0 to 3.6			±5	μA
I _{CCFS}	Supply Current (Full Speed)	V _{CC} = 3.0 to 3.6			5	mA
I _{CCLS}	Supply Current (Low Speed)	V _{CC} = 3.0 to 3.6			5	mA
Iccq	Quiescent Current	V _{CC} = 3.0 to 3.6			5	mA
		V _{IN} = V _{CC} or GND			Э	mA
Iccs	Supply Current in Suspend	V _{CC} = 3.0 to 3.6; Mode = V _{CC}			10	μA

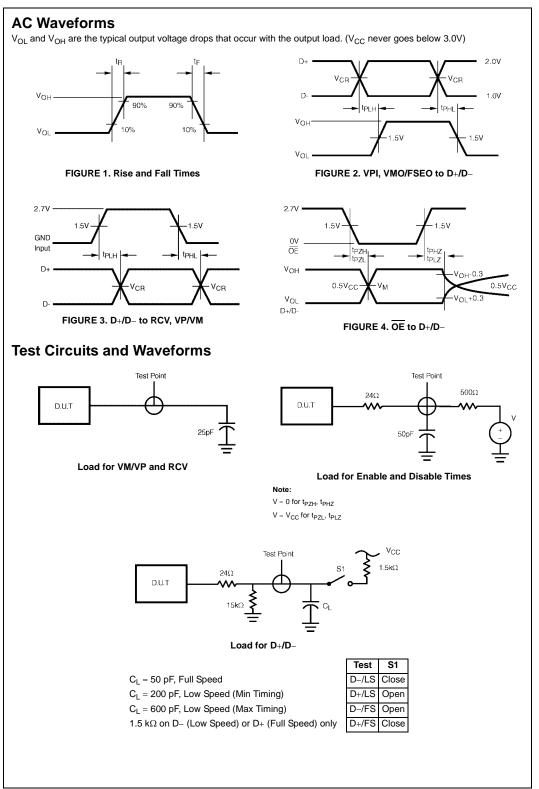
	Limits							
Symbol	Parameter	Test Conditions	Temp	= −40°C to	+85°C	Units		
			Min	Тур	Max			
	INPUT LEVELS:				•			
V _{DI}	Differential Input Sensitivity	(D+) - (D-)	0.2			V		
V _{CM}	Differential Common Mode Range	Includes V _{DI} Range	0.8		2.5	V		
V _{SE}	Single Ended Receiver Threshold		0.8		2.0	V		
	OUTPUT LEVELS:							
V _{OL}	Static Output LOW Voltage	R_L of 1.5 k Ω to 3.6V			0.3	V		
V _{OH}	Static Output HIGH Voltage	R_L of 15 k Ω to GND	2.8		3.6	V		
V _{CR}	Differential Crossover		1.3		2.0	V		
	LEAKAGE CURRENT:							
I _{OZ}	High Z State Data Line Leakage Current	$0V < V_{IN} < 3.3V$			±5	μA		
	CAPACITANCE:							
C _{IN} (Note 6)	Transceiver Capacitance	Pin to GND			10	pF		
	Capacitance Match				10	%		
	OUTPUT RESISTANCE:	•	•	•	•			
Z _{DRV} (Note 5)	Driver Output Resistance	Steady State Drive	4		20	Ω		
	Resistance Match				10	%		

Note 5: Excludes external resistor. In order to comply with USB Specification 1.1, external series resistors of $24\Omega \pm 1\%$ each on D+ and D- are remended. This specification is guaranteed by design and statistical process distribution.

Note 6: This specification is guaranteed by design and statistical process distribution.

AC Electrical Characteristics (D+/D- Pins, Full Speed)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). V_{CC} = 3.0V to 3.6V C_L = 50 pF; R_L = 1.5 k Ω on D+ to V_{CC}

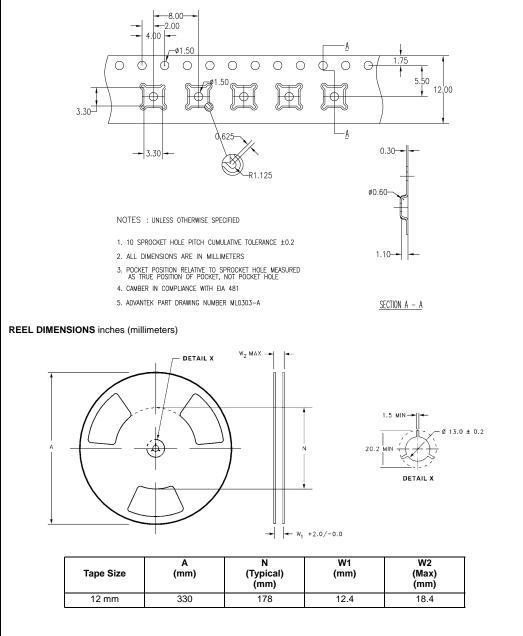

				Limits		
Symbol	Parameter	Test Condition	Temp = -40°C to +85°C			Units
			Min	Тур	Max	
	DRIVER CHARACTERISTICS:	÷				
		10% and 90%				ns
t _R	Rise Time	Figure 1	4		20	
t _F	Fall Time	Figure 1	4		20	
t _{RFM}	Rise/Fall Time Matching	(t_r/t_f)	90		110	%
V _{CRS}	Output Signal Crossover Voltage		1.3		2.0	V
	DRIVER TIMINGS:	·				
t _{PLH}	Driver Propagation Delay	Figure 2			18	ns
t _{PLH}	(VPO, VMO/FSEO to D+/D-)	Figure 2			18	ns
t _{PHZ}	Driver Disable Delay	Figure 4			13	ns
t _{PLZ}	(OE to D+/D-)	Figure 4			13	ns
t _{PZH}	Driver Enable Delay	Figure 4			17	ns
t _{PZL}	(OE to D+/D-)	Figure 4			17	ns
	RECEIVER TIMINGS:		-			
t _{PLH}	Receiver Propagation Delay	Figure 3			16	ns
t _{PHL}	(D+, D- to RCV)	Figure 3			19	ns
t _{PLH}	Single-ended Receiver Delay	Figure 3			8	ns
t _{PHL}	(D+, D- to VP, VM)	Figure 3			8	ns

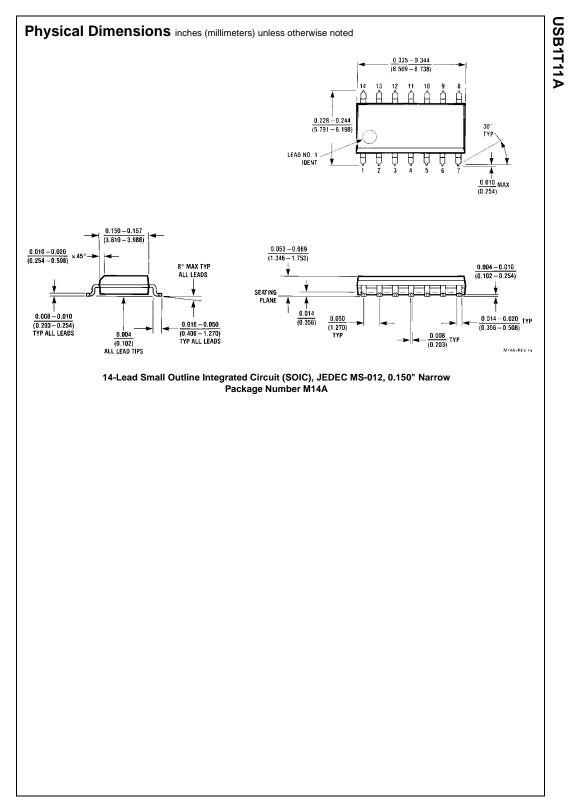
USB1T11A

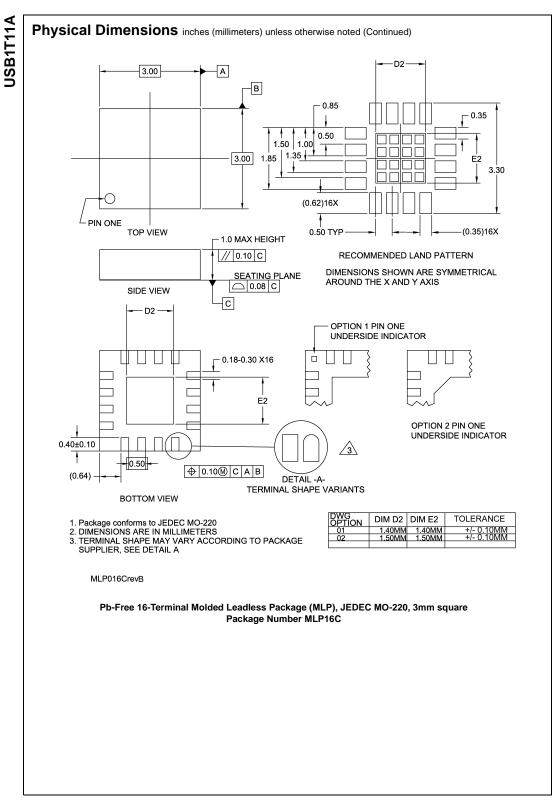
AC Electrical Characteristics (D+/D- Pins, Low Speed)

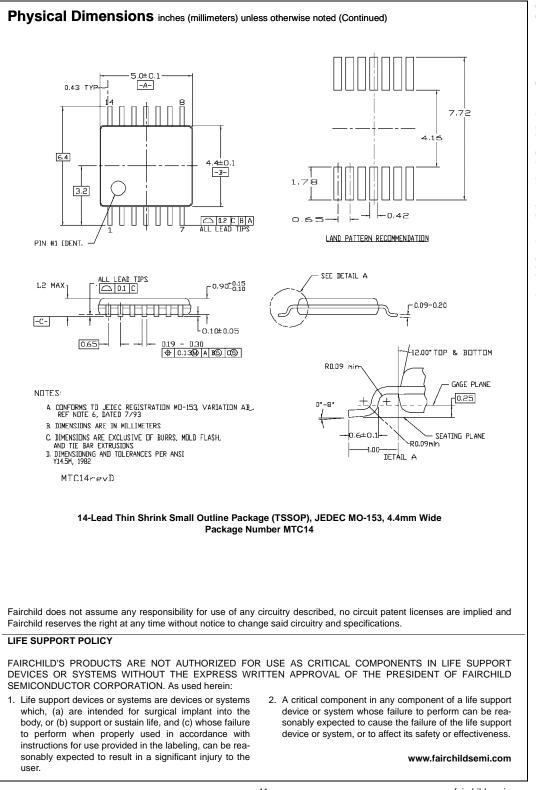
Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). V_{CC} = 3.0V to 3.6V C_L = 200 pF to 600 pF; R_L = 1.5k Ω on D– to V_{CC}

				Limits		
Symbol	Parameter	Test Conditions	$T_{amb} = -40^{\circ}C \text{ to } +85^{\circ}C$			Unit
			Min	Тур	Max	
	DRIVER CHARACTERISTICS:		•		•	
		10% and 90%				
t _{LR}	Rise Time	Figure 1	75		300	ns
t _{LF}	Fall Time	Figure 1	75		300	
t _{RFM}	Rise/Fall Time Matching	(t_r/t_f)	80		120	%
V _{CRS}	Output Signal Crossover Voltage		1.3		2.0	V
	DRIVER TIMINGS:					
t _{PLH}	Driver Propagation Delay	Figure 2			300	ns
t _{PHL}	(VPO, VMO/FSEO to D+/D-)	Figure 2			300	ns
t _{PHZ}	Driver Disable Delay	Figure 4			13	ns
t _{PLZ}	(OE to D+/D-)	Figure 4			13	ns
t _{PZH}	Driver Enable Delay	Figure 4			205	ns
t _{PZL}	(OE to D+/D-)	Figure 4			205	ns
	RECEIVER TIMINGS:		•		•	
t _{PLH}	Receiver Propagation Delay	Figure 3			18	ns
t _{PHL}	(D+, D- to RCV)	Figure 3			18	ns
t _{PLH}	Single-ended Receiver Delay	Figure 3	İ		28	ns
t _{PHL}	(D+, D- to VP, VM)	Figure 3			28	ns


Tape and Reel Specification


Tape Format for MLP				
Package	Таре	Number		
Designator	Section	Cavities		
	Loodor (Ctort End)	10E (hum)		


Designator	Section	Cavities	Status	Status			
	Leader (Start End)	125 (typ)	Empty	Sealed			
BQX	Carrier	2500	Filled	Sealed			
	Trailer (Hub End)	75 (typ)	Empty	Sealed			
TAPE DIMENSIONS inches (millimeters)							


Cavity

Cover Tape

USB1T11A Universal Serial Bus Transceiver