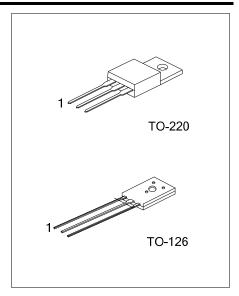


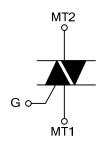
UNISONIC TECHNOLOGIES CO., LTD

UT134F/G **TRIAC**

TRIAC

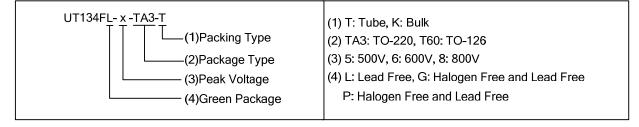

DESCRIPTION

The UTC UT134F/G is a triacs, it uses UTC's advanced technology to provide customers with high bidirectional transient and high thermal cycling performance.

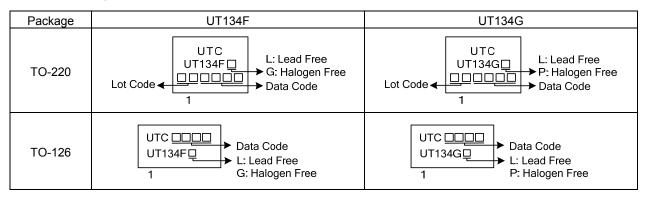

The UTC UT134F/G is suitable for motor control, heating and static switching, etc.

FEATURES

- * High bidirectional transient
- * High thermal cycling performance
- * Blocking voltage capability


SYMBOL

ORDERING INFORMATION


Order Number		Dookogo	Pin	Assignn	Dooking		
Normal	Lead Free Plating	Package	1	2	3	Packing	
UT134FL-x-TA3-T	UT134FG-x-TA3-T	TO-220	MT1	MT2	G	Tube	
UT134FL-x-T60-K	UT134FG-x-T60-K	TO-126	MT1	MT2	G	Bulk	
UT134GL-x-TA3-T	UT134GP-x-TA3-T	TO-220	MT1	MT2	G	Tube	
UT134GL-x-T60-K	-x-T60-K UT134GP-x-T60-K		MT1	MT2	G	Bulk	

Note: Pin Assignment: G: Gate

www.unisonic.com.tw 1 of 7 UT134F/G

■ MARKING

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT	
	UT134F/G-5		500	V
Repetitive peak off-state voltages	UT134F/G-6	V_{DRM}	600 (Note 2)	V
	UT134F/G-8		800	V
RMS on-state current full sine wave; Tmb	≤107°C	I _{T(RMS)}	4	Α
Non-repetitive peak on-state current t = 20ms			25	Α
(Full sine wave; T _J = 25°C prior to surge)	t = 16.7 ms	I _{TSM}	27	А
I ² t for fusing	t = 10 ms	l ² t	3.1	A^2s
	T2+ G+		50	A/µs
Repetitive rate of rise of on-state current after triggering	T2+ G-	dl _⊤ /dt	50	A/µs
	T2- G-		50	A/µs
I_{TM} =20A; I_{G} =0.2A; d_{IG} /dt=0.2A/ μ s	T2- G+		10	A/µs
Peak gate voltage	V_{GM}	5	V	
Peak gate current	I_{GM}	2	Α	
Peak gate power	P_GM	5	W	
Average gate power (over any 20 ms period	$P_{G(AV)}$	0.5	W	
Junction Temperature		T_J	+125	°C
Storage Temperature		T_{STG}	-40 ~ +150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES

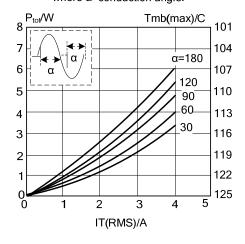
PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT	
Junction to Ambient	In Free Air	TO-220	θ_{JA}		60		°C/W
		TO-126			100		°C/W
Junction to mounting base	Full cycle	TO-220	θ _{JC}			2.0	°C/W
		TO-126				3.0	°C/W
	Half cycle	TO-220				2.4	°C/W
		TO-126				3.7	°C/W

■ STATIC CHARACTERISTICS (T_J =25°C, unless otherwise specified)

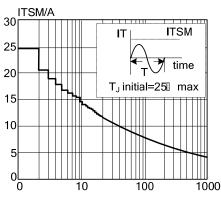
DADAMETED	SYMBOL	TEST CONDITIONS MIN		MINI	TYP	MAX		UNIT
PARAMETER	STIVIBUL			ITP	UT134F	UT134G	UNIT	
	I _{GT}	V _D =12V, I _T =0.1A	T2+G+		5	25	50	mA
Cata Trigger Current			T2+G-		8	25	50	
Gate Trigger Current			T2-G-		11	25	50	
			T2-G+		30	70	100	
	IL	V _D =12V, I _{GT} =0.1A	T2+G+		7	20	30	mA
Latching Current			T2+G-		16	30	45	
			T2-G-		5	20	30	
			T2-G+		7	30	45	
Holding Current	I _H	V _D =12V, I _{GT} =0.1A			5	15	30	mA
On-State Voltage	V_{T}	I _T =5A			1.4	1.7		V
Gate Trigger Voltage	V_{GT}	V _D =12V, I _T =0.1A			0.7	1.5		V
		V _D =400V, I _T =0.1A, T _J =125°C		0.25	0.4			V
Off-State Leakage Current	I_{D}	V _D =V _{DRM(max)} , T _J =125°C			0.1	0.5		mA

^{2.} Although not recommended, off-state voltages up to 800V may be applied without damage, but the traic may switch to the on-state. The rate of rise of current should not exceed 3A/µs.

UT134F/G

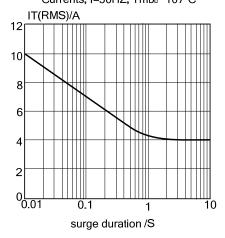

■ **DYNAMIC CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN		TYP	MAY	UNIT
TANAMETER	STWIDOL	TEST CONDITIONS	UT134F	UT134G	1 11	IVIAX	CIVII
Critical Rate Of Rise Of		V _{DM} =67% V _{DRM(max)} , T _J =125°C,	50	200	250		V/µs
Off-State Voltage	u v _D /ut	Exponential waveform, gate open circuit	50	200	250		ν/μ5
Critical Rate Of Change		V -400V T -05°C L -4A					
Of Commutating	dV _{com} /dt	V _{DM} =400V, T _J =95°C, I _{T(RMS)} =4A, dI _{com} /dt=1.8A/ms, gate open circuit		10	20		V/µs
Voltage		di _{com} /di=1.6A/ms, gate open dicuit					
Gate Controlled	4	I_{TM} =26A, V_D = $V_{DRM(max)}$, I_G =0.1A,			2		
Turn-On Time	t _{gt}	dI _G /dt=5A/µs					μs

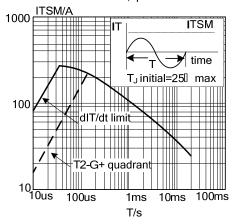

UT134F/G TRIAC

■ TYPICAL CHARACTERISTICS

Maximum On-State Dissipation, P_{tot} Versus Rms On-state Current, $I_{T(RMS)}$ where α =conduction angle.



Maximum Permissible Non-repetitive Peak On-state Current, I_{TSM}, Versus Number Of Cycles, For Sinusoidal Currents, f=50HZ.



Number of cycles at 50Hz

Maximum Permissible Repetitive Rms On-State Current , I_{T(RMS)} ,Versus Surge Duration, For Sinusoidal Currents, f=50HZ, Tmbl 107°C

Maximum Permissible Non-repetitive Peak On-state Current, ITSM, Versus Pulse Width tp For Sinusoidal Currents, tpl 20ms

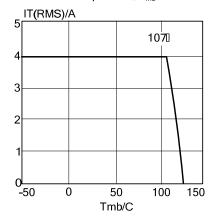
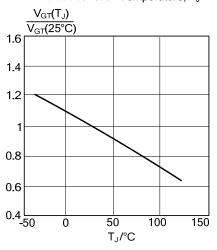
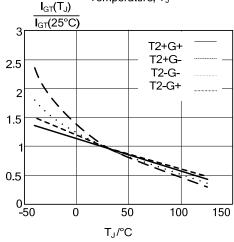
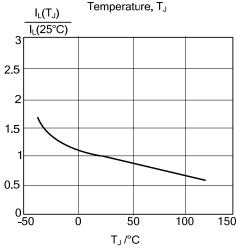
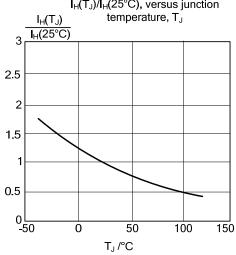
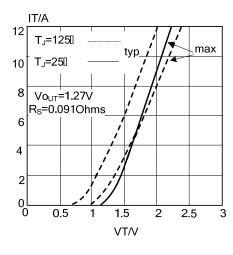




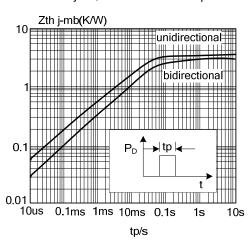
Fig 6. Normalised Gate Trigger Voltage, V_{GT}(T_J)/V_{GT}(25°C), Versus Junction Temperature, T_J

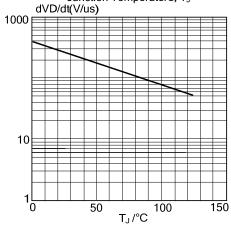


TYPICAL CHARACTERISTICS


Normalised Gate Trigger Current, I_{GT}(T_J)/I_GT(25°C), VersusJunction Temperature, T_J


Normalised Latching Current, I_L(T_J)/I_L(25°C) Versus Junction


Normalised Holding Current, I_H(T_J)/I_H(25°C), versus junction


Typical And Maximum On-state Characteristic

Transient Thermal Impedance Zthj-mb, Versus Pulse Width tp

Typical Critical Rate Of Rise Of Offsatate Voltage, DVD/dt Versus Junction Temperature, T_J

UT134F/G

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

